PHYSICAL REVIEW E, VOLUME 64, 046310
Anomalous scaling, nonlocality, and anisotropy in a model of the passively advected vector field
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A model of the passive vector quantity advected by the Gaussian velocity field with the covaridftce
—t")|x—x'|? is studied; the effects of pressure and large-scale anisotropy are discussed. The inertial-range
behavior of the pair correlation function is described by an infinite family of scaling exponents, which satisfy
exacttranscendentaéquations derived explicitly id dimensions by means of the functional techniques. The
exponents are organized in a hierarchical order according to their degree of anisotropy, with the spectrum
unbounded from above and the leadifmginimal) exponent coming from the isotropic sector. This picture
extends to higher-order correlation functions. Like in the scalar model, the second-order structure function
appears nonanomalous and is described by the simple dimensional exg@nentt: °. For the higher-order
structure functionsS,,r"?=#)*4n the anomalous scaling behavior is established as a consequence of the
existence in the corresponding operator product expansions of “dangerous” composite operatorsieghese
tive critical dimensions determine the anomalous exponapts0. A close formal resemblance of the model
with the stirred Navier-Stokes equation reveals itself in thiging of relevant operators and is the main
motivation of the paper. Using the renormalization group, the anomalous exponents are calculat€| i) the
approximation, in largel dimensions, for the even structure functions up to the twelfth order.
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[. INTRODUCTION The OPE and the concept of dangerous operators for the
Navier-StokegNS) turbulence were introduced in R¢l.5];
The investigation of intermittency and anomalous scalingdetailed review and bibliography can be found[it6,17).
in fully developed turbulence remains essentially an opefhe relationship between the anomalous exponents and di-
theoretical problem. Much effort has been invested recentlynensions of composite operators was anticipated in[R8f.
into the understanding of the inertial-range behavior of thefor the stochastic hydrodynamics and #5,19 for the Kra-
passive scalar. Both the real experiments and numericathnan model within certain phenomenological formulation
simulations suggest that the breakdown of the classicabf the OPE, the so-called “additive fusion rules,” typical to
Kolmogorov-Obukhov theory1] is even more strongly pro- the models with multifractal behavig20]. A similar picture
nounced for a passively advected scalar field than for th@aturally arises within the context of the Burgers turbulence
turbulent velocity itself. On the other hand, the problem ofand growth phenomenr&1,22.
passive advection appears easier tractable theoretically; see Important advantages of the RG approach are its univer-
Ref.[2] and references therein. sality and calculational efficiency: a regular systematic per-
The most progress has been achieved for the so-calletirbation expansion for the anomalous exponents was con-
rapid-change model of the passive scalar advection by a selétructed, similar to the well-know#s expansion in the theory
similar white-in-time velocity field3]. The model is inter- of phase transitions, and the exponents were calculated in the
esting because of the insight it offers into the origin of inter-second[8—11] and third[12] orders of that expansion. For
mittency and anomalous scaling in turbulence: anomaloupassively advected vector fields, any calculation of the expo-
exponents have been calculated on the basis of a microscopients for higher-order correlations calls for the RG tech-
model and within controlled approximatiofd—7]. Within  niques already in th®(&) approximatior{9,23,24. Further-
the “zero-mode approach” to the rapid-change model, pro-more, the RG approach is not related to the aforementioned
posed in Refs[4-6], nontrivial anomalous exponents are solvability of the rapid-change model and can also be applied
related to the zero moddhiomogeneous solution®f the  to the case of finite correlation time or non-Gaussian advect-
closed exact differential equations satisfied by the equal-timeng field [14].
correlations. In this sense, the model appears exactly solv- Recent research on the Kraichnan model and its descen-
able. A recent review and more references can be found idants has mostly been concentrated on the passive scalar
Ref.[2]. advection. The large-scale transport of vector quantities ex-
In Ref. [8] and subsequent papd®-14), the field theo- hibits more interesting behavior; see monogrgphand ref-
retic renormalization grougRG) and the operator product erences therein. In this paper, we study the anomalous scal-
expansionOPE) were applied to the mod¢B-5]. The fea- ing and effects of anisotropy and pressure, for the passive
ture specific to the theory of turbulence is the existence in theectorfield advected by the rapid-change velocity field. The
corresponding field theoretical models of the composite opmodel has already been introduced and discussed indepen-
erators withnegativescaling(critical) dimensions. Such op- dently in Refs[25] and[26].
erators, termed “dangerous” if8—14, give rise to anoma- Before explaining our motivations, which follow the same
lous scaling, i.e., the singular dependence on the infraretines as those of Ref§25,2€], we shall discuss the definition
(IR) scale with certain nonlinear anomalous exponents. of the model in detail.
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We shall confine ourselves to the case of transvésee case, where the pressure term disappears, was studied earlier
lenoida) passive 9(x)={6;(t,x)} and advecting v(x) in a number of papers in detail; see Rg&3,27-30Q.
={vi(t,x)} vector fields and the advection-diffusion equa- From the physics viewpoints, the moddl.1)—(1.3 can
tion of the form be considered as the linearized NS equation with the pre-
scribed statistics of the background fie@énd the additional
convention that the field is “soft” and the perturbatiory is
“hard,” that is, 96> dv. Our motivation, however, is differ-
ent: a close formal resemblance of the modkei)—(1.3
with the stirred NS turbulence.
Although the mode(1.1) is formally a special case of the
(fi0f(x"))y=6(t=t")Cy(r/L), r=x—x". (1.2 general “A model” [2_4], it appears in a sense exceptional
and requires special investigation. In this case, the stretching
The parametek is an integral scale related to the stirring andterm is absent and the analog of the kinetic eneff(x) is
Cij is a dimensionless function finite ds—. Its precise conserved, as for the passive scalar and stochastic NS equa-
form is not essential; for generality, it is not assumed to bdions. An important consequence is the existence of a con-
isotropic. Therefore, the force maintains the steady state angtant flux solution, characteristic of the real NS turbulence
is also a source of the large-scale anisotropy in the system[1]. The second-order structure function appears nonanoma-
The velocityv(x) obeys a Gaussian distribution with zero lous and is described by the simple “dimensional” exponent,
mean and covariance S,ocr?7e,
Furthermore, since onlgerivativesof the field # enter
S , Cdes . into Eq. (1.1), the latter possesses additional symmedry
(0i(x)p;(x"))=Dod(t~t )f DpPij(p)p exeLi(pr)] — 6+ const. The leading anomalous exponents in the mag-
(1.3 netic and general cases are determined by the composite op-
_ erators built of the field without derivativeg23,24]; in our
Here adnd belowp is the 2m_omentum,pz|p|, Dp  case they become trivial and the leading nontrivial exponents
=dp/(2m)°, Pij(p)=d;—pip;/p” is the transverse projec- aye related to the composite operators built solely ofgiee
tor, D¢>0 is an amplitude factor andlis the dimensionality  yientsof 6.
of the x space. The exponent<Ge<2 plays in the RG ap- A similar distinction exists also between the density and
proach the same role as the parameterd—d does in the  {racer scalar fields advected by a compressible velocity, as
RG theory of critical behavior. The IR regularization is pro- giscussed in Ref9] in detail. But in contrast with the scalar
vided by the cutoff in integra(1.3) from below atp=m,  case, where the leading exponent for a given-order structure
where 1 is another integral scale; the precise form of thefynction is determined by an individual composite operator
cutoff is not essential. In what fOIIOWS, we shall not distin- even in the presence of thie— 6+ const invariancég_lo],
guish the two IR scales, settimg~1/L. The relations in the vector model(1.1) the inertial-range behavior of any
. structure function is determined by family of composite
Do/vo=go=A (1.4 operators with the same symmetry and dimension, and in
order to find the correspondirsgetof exponents and to iden-
tify the leading contribution, one has to consider the renor-
malization of the whole family, which implies thmixing of
individual operators.
In the scalar case, the anomalous exponents for all struc-
e functions are given by a single expression that includes
n, the order of a function, as a paramefdy5,§]. This re-
= —30.9 0 mains true for the vector models with the stretching term
AP==0dw;3;6:. 9 [23,24. In the special vector modéll.1), the number and

The issue of interest is, in particular, the behavior of thethe form of the operators entering into the relevant family

Vtﬁi—i-(?i’P: V0A0i+fi, Vtzﬁt‘f‘(l)j&j), (11)

where P(x) is the pressurey, is the diffusivity, A is the
Laplace operator, anfl(x) is a transverse Gaussian stirring
force with zero mean and covariance

define the coupling constamgy, (i.e., the formal expansion
parameter in the ordinary perturbation theoayd the char-
acteristic ultraviolefUV) momentum scalé\.

Due to the transversality conditions;,=d;v;=0, the
pressure can be expressed as the solution of the Poiss?lﬂ
equation,

equal-time structure functions depend essentially on, and different structure functions
should be studied separately. As a result, no general expres-
Sa(r)=([6,(t,x)— 6,(t,x")]") (1.6)  sion valid for alln exists in the model, in contrast with the
scalar[4,5], magnetid 23], and general vectd24] models.
in the inertial range, specified by the inequalities\ &r In this respect, the modéll.1) is one step closer to the

<L~1/m. Here §,=6;r;Ir is the component of the passive nonlinear NS equation, where the inertial-range behavior of
field along the directiom=x—x', an analog of the stream- structure functions is believed to be related with the
wise component of the turbulent velocity field in real experi- Galilean-invarianfand hence built of the velocity gradiepts
ments. operators, which mix heavily in renormalization; 46,17

The general symmetry of the vector problem permits oneand references therein.
to add on the left-hand side of the advection-diffusion equa- Another important question recently addressed is the ef-
tion the “stretching term” of the form ¢;d;)v; . This general fects of large-scale anisotropy on the inertial-range statistics;
vector model is studied in Ref24], and its special magnetic see, e.g., Ref2] and references therein. In particular, it was
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shown that in the presence of anisotropic forcing, the expoin detail; Sec. VI B. The critical dimensions of the relevant
nents describing the inertial-range scaling of the passiveljamily of operators are calculated to orde(e) in d dimen-
advected scaldrl4,31] and vector[23,29,3Q fields and the sions; they include a negative dimension, and the fun@ipn
turbulent velocity field itself32—39 are organized in a hi- shows anomalous scaling. The families of the anomalous ex-
erarchical order according to their degree of anisotropy, witfponents related to the higher-order functic®g are calcu-
the leading contribution coming from the isotropic sector.lated in Sec. VI C, in the limit of large, for n as high as 6;
The consistency of this picture with the presence of nonlocafome technical details are given in Appendix B.
terms in the equations for the correlation functions, caused Generalization to the case of anisotropic sectors is dis-
by the pressure contributions, has been addressed recenflyssed in Sec. VI D and VI E. There, the RG and OPE tech-
[36] and answered positively in RgR6] on the example of hiques confirm the general picture established earlier for the
the model(1.1)—(1.3), for the pair correlation function in pair correlation function(infinite sets of exponents, hierar-
three dimensions, and in Ref24] on the example of the chy, absence of saturatipand extend it to the case of the
general A model, for the correlation functions of arbitrary higher-order structure functions.
order ind dimensions. The results obtained are reviewed and discussed in the

The plan of the paper and the main results are the followConclusion, where the lessons one can learn regarding the
ing. In Sec. Il we give the field theoretic formulation of the stirred NS equation and possible generalization to this non-
model, its diagrammatic techniques, and derive exact equdinear problem are also briefly outlined.
tions for the response function and pair correlation function:
the so-called Dyson-Wyld equations. Il. FIELD THEORETIC FORMULATION AND THE

In Sec. Il we study the inertial-range behavior of the pair DYSON-WYLD EQUATIONS
correlation function in the presence of the large-scale aniso-
tropic forcing. This issue for the modél.1)—(1.3) was al-
ready discussed in Reff26], where the numerical solutions ™
for the scaling exponents were presented in three dimensions
for the isotropic sector and low-order anisotropic sectors.

In this paper, starting from the Dyson-Wyld equations, we

give the general recipe of deriving nonperturbative exacirpe first three terms in Eq2.1) represent the Martin-Siggia-

equations and obtain explicitly transcendental equations foﬁose-type action for the stochastic problefb<) and (1.2)
the scaling exponents, related to different irreducible reprez; fivedy (see, e.9]16,17 and references thergirwhile the

sentations, ird dimensions. This allows us to give general |55t term represents the Gaussian averaging eveiereD ,

description of the behavior of the full set of solutions in ;4D are the correlation functiond.2) and (1.3), respec-
isotropic and anisotropic sectors, and to derive analytical reflvely, va, is an auxiliary transverse vector field, the required

zultsllln all sectors to °fd§©(8) '2 d d|mer|1$|ons..”Some integrations ovex=(t,x) and summations over the vector
etails are given in Appendix A. These results are illustrate hdices are implied, for example,

by a few nonperturbative solutions obtained numerically in

The stochastic problenil.])—(1.3) is equivalent to the
field theoretic model of the extended set of three fields
{6’,6,v} with action functional

S(@)=0'Dy0'12+0'[ -V +voAl6—vD, V2. (2.0

two and three dimensions for the isotropic and low-order

anisotropic sectors; later, in Sec. VID and VIE they are 9'5tﬂEf dtdx 6/ (t,x)d;6;(t,x).

confirmed using the RG and OPE techniques and extended to

higher-order structure functions. The pressure term can be omitted in the functic@al) ow-

In Sec. IV, we perform the UV renormalization of the ing to the transversality of the auxiliary field:
model and derive the corresponding RG equations with ex-
actly known RG functions g function and anomalous di- , ,
mensions of the basis fields and parameteFer d>>3, f dx6; aip:_f dxPa; 6; =0.
these equations possess an IR stable fixed point, which es-
tablishes the existence of IR scaling with exactly knownOf course, this does not mean that the pressure contribution
scaling dimensions of the basis fields and parameters of thean simply be neglected: the fiell acts as the transverse
model. projector and selects the transverse part of the expression in
In Sec. V, we discuss the operator product expansion anthe square brackets in E.1).
its relationship to the issue of anomalous scaling. We show The formulation(2.1) means that statistical averages of
that nontrivial exponents describing the inertial-range behavrandom quantities in stochastic problefisl)—(1.3) can be
ior of the 2nth-order even structure function are related torepresented as functional averages with the weight
critical dimensions of scalar composite operators builtof 2 expS(®), so that the generating functionals of tqt@(A)]
derivatives of the advected field. Explicit calculation of theand connecteflW(A)] Green functions of the problem are
dimensions of relevant operators is given in Sec. VI. Thegiven by the functional integral
casen=1 can be treated exactly using certain functional
Schwinger equatiofiin the case at hand, it has the meaning
of the energy balance equatjorike in the scalar casf8],
the functionS,or?~ ¢ appears nonanomalous with the simple
dimensional exponent; Sec. VI A. The case 2 is studied with arbitrary sourceA=A’" A’ AV in the linear form

G(A)=expW(A)=J DO exd S(P)+ADP] (2.2
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whereX?? andX?'?" are self-energy operators represented
by the corresponding one-irreducible diagrams; the other

functions 3®® vanish identically. It is also convenient to

The model(2.1) corresponds to a standard Feynman diacontract Eq(2.5a with the projectorP;;(p) in order to ob-

grammatic technique with the triple vertex 6’(vd)6
= 0/ 6juvVij with vertex factor
Viik(p) =1 6Pk 2.3

where p is the momentum flowing into the vertex via the

field #’. The bare propagators in the frequency-momentum

(w-p) representation have the forms

(0i(@0,p)0j (= w,—P))o=(0/ (0,p) §;(—w,—P))5

Pij(p)
_(—iw-l- Vopz), (243
_ Cij(p)
(6i(.,p) 0(~ o, p)>°_(w2+v§p4)’ (2.4b
(6] (,p) 0 (—®,—Pp))o=0, (2.49

whereC;;(p) is the Fourier transform of the functid®y;(r)
from Eq. (1.2); the bare propagatdw;v;), is given by Eq.
(1.3.

The action functional2.1) is invariant with respect to the
dilatation 6—\ 6, 8’ — 6'/\, C—\2C, whereC is the cor-
relation function(1.2). It then follows that any total or con-
nected Green function witlm fields # and p fields 6’ is
proportional to C(""P2_ Since the functionC appears
in the bare propagatof2.4b only in the numerators, the

tain the scalar equation:

G Yw,p)=—iw+vp?-2%w,p), (268
where we have written
3% w0,p)=3f%w,p)P;(p)/(d—1).  (2.6D

The feature characteristic of the rapid-change models like
Eqg. (2.1) is that all the skeleton multiloop diagrams entering

into the self-energy operatoBs’ ? and3? ?" contain effec-
tively closed circuits of retarded propagatarg@é’), and
therefore vanish; it is crucial here that the velocity propaga-
tor (1.3) contains thes function in time and the bare propa-
gator (2.49 vanishes. Therefore the self-energy operators in
Eqg. (2.5 are given by the one-loop approximations exactly
and have the forms
9’9
X = ’ (2.7a

The thick solid lines in the diagrams denote thactpropa-
gators(#6') and(66); the ends with a slash correspond to
the field ', and the ends without a slash correspond;tthe
wavy lines denote the velocity propagatar3); the vertices

correspond to the facta2.3). The first equation does not
include the correlation functiofi.2), which justifies the iso-

2 = 2.79

differencen—p is an even non-negative integer for any non-tropic form of the functiorg;; . The analytic expressions for
vanishing function; the Green functions with-p<0 van-  the diagrams in Eq2.7) have the forms
ish identically. On the contrary, the one-irreducible function

0(Xq1)---0(Xn) 0" (y1)---0"(yp))1_ir contains the factor , Pii(p) ,
El(p‘“)/z and therefore vanishgs>fn|L p>0; this fact will be 27 w,p)= (dj_ 1) Do f DK Viii,(P)Pi i, (p—K)
relevant in the analysis of the renormalizability of the model
(see Sec. IV. DoPi i, (k)
The pair correlation functioné®®) of the multicompo- XG(w',p—k) ave Vi, ii,(P), (2.83

nent fieldd satisfy standard Dyson equation, which in the
component notation reduces to the system of two nontrivial
equations for the exact correlation functio®;(w,p)
=(6;(w,p)6;(—»,—p)) and the exact response function
Gij(0,p)=(6i(w,p) 0; (— w,—p)). We shall see below that
the latter function does not include the correlation function
(1.2), therefore it is isotropic and can be written as
Gij(w,p)=Pi;(p)G(w,p) with certain isotropic scalar func-
tion G(w,p). Thus the component equations, usually referredHere we have denote®w’=dw'/(27), used the explicit
to as the Dyson-Wyld equations, in our model take on theorm (1.3) of the velocity covariance and the relation
form (cf. Refs.[9] for the scalar andl23] for the magnetic Pi.i,(K)Vi,ji,(p—K)=P; ;i (K)V;, ji,(p) for the vertex factor
models in Eq. (2.3. We also recall that the integrations ovkr

-1 AV i 21D (506 should be cut off from below dt=m.
G H@p)Pij(p)=[~iw+vop]Pi(p) =] (w,p(), 5 The integrations with respect te’ on the right-hand
2.5

sides of EQs.(2.8) give the equal-time response function
Dij(@,p)=|G(@,p)ALCyj(p)+3{ * (@,p)], (25D

A w,p)=f Dw'f DkViii,(P)Dii (" ,p—k)

DoPi,i,(K)

Kd+e (2.8D

Vii,i,(—P).

G(k)=Dw'G(w’ k) and the equal-time pair correlation
function Dj;(k) = [Dw'Djj(w',k); note that both the self-

046310-4



ANOMALOUS SCALING, NONLOCALITY, AND.. ..

energy operators appear independeniofThe only contri-
bution toG comes from the bare propagat@:4a, which in
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Equations(2.9—(2.14) give the explicit exact expression
for the response function in our model; it will be used in Sec.

the t representation is discontinuous at coincident timeslV for the exact calculation of the RG functions. The inte-

Since the correlation functiofl.3), which enters into the
one-loop diagram fo2? ?, is symmetric int and t’, the
response function must be definedatt’ by half the sum of
the limits, which is equivalent to the conventiof(k)
=[Dw'(—iw'+vok?) ~1=1/2. This allows one to write the
equation(2.63 in the form

G Hw,p)=[~io+ver(p)p?, (2.9

where thep-dependent effective “eddy diffusivity” is given
by

Dk
kd+s

- <pk>2]

2 — 2
2p“ves(p)=2vop°+ Dof =

(2.10

, p2k2—<pk>21
X|pfm —————— .
(d—1)|p—kK]

It follows from Eq.(2.10 that the eddy diffusivity can be
written as the sum of two partSi.ii{(P) = vioct Vnon(P),

gration of Eq.(2.5b over the frequencyw gives a closed
equation for the equal-time correlation function; it is impor-
tant here that thew dependence of the right-hand side is
contained only in the prefactdg(w,p)|?:

2ve(P)P?D;(P)=Cyy (P +2] "(p). (2.9

Using Egs.(2.8b), (2.10, and(2.11), the equation forD;;
can be rewritten in the form

(pk)?
. pzkz]
X{Pii (P)Di i,(P—K)Pi;(p)— Dy (p)}
- 2Vnon(p)p2Dij (P)- (2.16

The subtracted term in the curly brackets is the contribu-
tion of v, in Eq. (2.15 written in its integral form(2.113.
For 0<e<2, the IR cutoff in Eq.(2.16) can be removed.

) ) Dk
2vop“Djj(p)=C;j(p) +p°Dy e

where the local part ip independent and coincides with the |pdeeq, owing to the subtraction, the integral okes finite
expression for the effective diffusivity known in the scalar for m—.0: the possible IR divergence kt=0 is suppressed

and magnetic cases, while the nonlocal contribution has gy the expression in the curly brackets. In what follows we
finite limit at m=0 but retains a nontrivial dependence ongetm=0 in Eq. (2.16.

the momentum:

Do [ Dk (pk)? ~ (d-1)
Vioc=Vot 7f kd+8|:1_ o1 =vy+DoCym *———,

2de
(2.11a
_ Do Dk (pk)?|  (pk)*—p?k?
Vnon(p)—7 ke - p2k2 (d—l)pzlp—k|2' (2.11b

Here and belowC =S,/(27)% andSy=27Y4T(d/2) is the

surface area of the unit sphere drdimensional space and

I'(2) is the Euler Gamma function. The paramatem v
has arisen from the lower limit in the integral ovier For
m=0, Eq.(2.11b gives

Vnon(p):_DOpisJ/(‘]"’T)d/Z: (2.12
where
€ € d
(d+1)r > r 1—5 ri+-
" TN PPl P Pl o
+t—— +—
while for p=0 one obtains
_, (d+1)
Vnon:_CdDOm 2d(d+2)8,
. (d?-3)
vert= Vot CyDom 2d(d—+2)8 (2.19

It is instructive to compare expressi@®.14) for the ef-
fective diffusivity in our model with its analogs for the scalar
[4] and magneti¢23] cases. For those, the nonlocal part of
the effective diffusivity vanishes identically, while its local
part coincides with Eq.(2.113. Therefore the ratio
Vioe! Vesr=(d—1)(d+2)/(d®>—3) (we have putp=0 and
neglected the bare diffusivity,) can be considered as a
measure of the nonlocality contribution into the turbulent
diffusion. It tends to unity agd— oo, increases monotonically
as d decreases and divergesdft=3. This means that the
nonlocality contribution is negligible at largk(see also Ref.
[24] for the general vector modebecomes comparable with
the local contribution agl is reduced, and dominates the
diffusion in low dimensions(in particular, v,y /vess=5/3
and 4 ford=3 and 2, respectively

We also notice that, according to EQ.14), the effective
diffusivity ves1(p) becomesnegativefor small p<m and
d?<3. Therefore the response function in the time-
momentum representation,

Gij(t,p)=0O(t)P;;(p)exp — ver( P)P?t},

where0 (1) is the step function, grows with time for small

thus signalling that the steady-state solution cannot be stable
for d?<3: any small perturbation would lead to the exponen-
tial in-time growth of the mean field#). Indeed, one can
easily see that Eq2.15 for the correlation function has no
solutions at smalp andd?< 3: its left-hand side is negative,
while the right-hand side is strictly positive for all We
shall see below in Sec. Il A that the inertial-range solutions
of2 Eqg. (2.15 also become singular and disappear in the limit
d“—3.
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Although the instability occurs for unphysical value af Dk (pk)2 1 1
it deserves some attention as a result of the competition be- DOJ d”[ - { T Tar 1
tween the local and nonlocal contributions: from E@s11) K pk [p—k|TY ptY
it follows that v, is strictly positivefor all d, while v, is K3[1— (pk)2/p2K?]
strictly negative In a few respects, such an instability differs - } =2vh0n(P)P 977, (3.2
from that established in Ref27] for the magnetiq(local) (d—1)|p—k[@*7+2

case, in three dimensions, wherg,,=0, the effective dif-
fusivity coincides with its local parf2.113 and is always .
positive. Thus the response function, and hence the medHtegraIs
(), show no hint of misbehavior at the threshold of the

In the following, we shall need the standard reference

2/ 121,210 —d—a-—
instability; the latter reveals itself on the level of the pair f (1= (Pk)7/pK7] = ( B)p—ﬁ
correlation function and can be related to the complexifica- kdte|p—k[dtE T (44927
tion of the inertial-range exponents; see R¢ET.—30. (3.339
where
I1l. INERTIAL-RANGE BEHAVIOR AND SCALING d—1 o B a+B+d

EXPONENTS FOR THE PAIR CORRELATION FUNCTION F( n+ —) ( - E)F( - E) F(T)

IN THE PRESENCE OF LARGE-SCALE ANISOTROPY I (a,B)= .

d-1 a+d| [(B+d atp

It is well known[4—6] that nontrivial inertial-range expo- F( 5 )F( n+— )F 5 )F( n-— )
nents are determined by zero modes, i.e., the solutions of Eq.
(2.16) neglecting both the forcingC(r)=0] and the dissi- (3.3b

pation (vo=0). Whatever be the forcing, equations for zero  The integral(3.33 is finite in the region of parameters
modes are linear and S@) covariant, and their solution can specified by the inequalitiea<<0 (convergence ak—0),
be sought in the form of decomposition in irreducible repre-3<2n (convergence ak—p—0, improved by the factor
sentations of the rotation group. Equati¢h16) then falls  [1—(pk)?/p?k?]"<|k—p|?") and «+B>—d (convergence
into independent equations for the coefficient functions. Inat k—o). However, expressioii3.3b is meaningful in a
three dimensions, such decompositions were used in Refaider range of parameters and, in the spirit of analytical and
[26,30. dimensional regularizations7,38, it can be considered as
Below we use more elementary derivation, which allowsthe analytical continuation of the integré.3g9 from the
one to obtain explicitly transcendental equations for the scalregion in which it converges. The precise meaning of such
ing exponents, related to different irreducible representaa continuation is that Eq3.3) gives the correct value of the
tions, ind dimensions. We restrict ourselves to the case ointegral with proper subtractions that ensure its convergence.
uniaxial anisotropy, specified by an unit vector which is  For example, if the factor fig—k|%"# is replaced with the
sufficient to findall independent exponents, and use explicitgifference 1jp—k|9*#—1/p?*# (that is, the zeroth term of

expressions for the basis functions in tmementum repre-  the Taylor expansion ik is subtractey the integral becomes

sentation Then the transversality condition can be easily IM-convergent fore<2 and expression E43.3) gives the cor-

posed from the very beginning, and there is no need to checkct answer for this “improved” integral.

It a posteriort . One can easily see that E&.2) involves such a subtrac-
In contrast with the real-space Legendre decompositionjon which improves its convergence at smallTherefore,

employed in Refs[23,29, our representation is consistent yne can use the formal expressi@3) in Eq. (3.2 and

with the rotational symmetry: it can be considered as thesimultaneously omit the subtracted term. Then E32
projection of the complete S@J decomposition onto the t5kes the form

subspace of the functions with uniaxial symmetry. Therefore,
no additional assumptions, like the hierarchy of exponents, [1(g,y)—l(e—2,y+2)/(d=1)=-2], (3.9
are needed to disentangle the equations for different aniso-
tropic sectors. with J from Eg. (2.13. We shall see below that tHeading
We start with the isotropic case and then discuss the gerfdmissiblesolution of this equation ig=2—e¢, so that the
eral situation. integrals entering into E(3.2) are convergent for all € ¢
<2 and the above procedure is internally consistent. In Eq.
(3.4), we omit the overall nonvanishing factor
A. Solution in the isotropic shell

€ +d+e
In the isotropic case, the inertial-range solution is sought F( 1- E)F 1- %)F 7T
in the form
d+e d+y v+e
Dij(p)=A pij(p)p—d—yl (3.0 e(d+1)I'| 1+ 5 rii+ 5 ri2- >

and obtain the desired equation for the zero-mode exponents
The zero-mode analog of E¢R.16) takes on the form in the isotropic case:
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FIG. 1. Leading scaling exponents for the isotropic setto® in d=2 (left) andd=3 (right).

(d—1)(d+y)(2—y—e)/(d+1)+e convenient to rewrite the right-hand side of Eg§.5 such
g g that the Gamma functions have no polesygpt 2k. This is
rl 1+ 2 1+f rl 1+ Y I 2_8 Y easny_ done using the relation 1“(1+_z)1“(1 z_)

2 2 2 2 =z/sin(wz) and is also useful for the numerical solution.

=2 d—e Y\ [dte+y . _Nonperturpative solutions Qf Eq3.5 can c_)nly be ob-
ry2+ - ryi1- > r — tained numerically. They are illustrated by Fig. 1 fib+2

(left) andd =3 (right); the latter is in agreement with Fig. 2
(3.5  from Ref.[26]. One can see that solutiof3.6) exist for all
O=g¢=2, decrease monotonically as grows and turn to
The transcendental equati¢®.5) has infinitely many so- y«=2k—2 ate=2. The exponenty=0 corresponds to the
lutions. This means that the inertial-range behavior of theyg|ytion 8;6(p) that exists for alld (see below
correlation function is given by an infinite sum of powerlike |t ig easily seen that the integrals entering into E3j2)
contripu_tions of the forn(3.1); the leading term is given by g, divergent on these solutions kat p—0. One can say
the minimal exponeny. ) that the knowledge of the exponents is insufficient to discuss
Some solutions can be ruled out as not admisgllBl;  the convergence: it is necessary to know the behavior of the
admissible solutions are non-negative o0 (see, e.9., entire solution in the region of small momenta—p|<m,
[23,30). The remaining solutions, all having the formys=  \yhere it no longer reduces to a sum of power terms with the
—d—2k+0(e) with non-negative integek, are also mean- exponentg3.6). However, it is intuitively clear that the form
ingful and describe the behavior of the correlation function alyf the solution at such small momenta is irrelevant for the
large scales>L [4]; we shall not discuss them in the fol- cajculation of the inertial-range exponents. Indeed, we made
lowing. no assumptions about the form of the solution in that range,
It then follows from Eq.(3.5) that the leading admissible sought them in purely powerlike form and managed to derive
inertial-range solution ig=2— (no corrections of ordes®  ¢losed equations for the exponents using the prescriptions of

and highey. In the coordinate representation, this corre-the analytical regularization. A simple justification of this
sponds taS,r2~ 2, that is, the second-order structure func- procedure follows.

tion is nonanomalous like in the scalar mog@). In coordinate representation, the solution is sought in the
For smalle, all the subleading exponents can be writtenform D(r)ecr C(mr) (for simplicity, here and below we omit
in the form its vector indices The convergence problems ariseyif-0,
which is implied in what follows. It is natural to assume that
yk:2k—s(d_1)(d+2) +82(d+1)(d+2) the scaling functiorC(mr) is such thatD(r) vanishes at
(d®>—3) 2(d2-3)2 =0 along with all its derivatives up to theth order, where

nis the maximal integer satisfying the inequaligy-n. This
gives the set of integral relations

(d+1)

X A= D=+ 26

+0(e% (3.6

with k=2,3,4 and so on. The functiong(z)=d InT'(2)/dz J _ _ _ _
can be eliminated from the coefficient dag;, ...y, P(@=0, k=01,...n (37

K= (k+d/2)— p(2+d/2)+ (k) — (1) _
for the correlation functiorD(q)=q 9~ YC(g/m) in momen-
using the relationy(z+1)=(z) +1/z. In order to prevent tum representation. The integral entering into E3j2) can
the appearance of ambiguities in the zeroth ordes,iit is ~ symbolically be written as
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Eq. (3.10, and the equation is satisfied. Another such solu-

J dq F(q,p)D(q), (3-8 tion, [8;—dnin;] 8(p), belongs to the first anisotropic sec-
tor. The both solutions are automatically transverse owing to

where we have introduced the new varialgle p—k. The  the relationp;5(p)=0. In coordinate representation, they

form of the kerneF(q,p) is clear from the comparison with correspond to constant terms, so that the expomger® can

Eg. (3.2); the divergence can arise from the regign-0,  formally be assigned to them. They are indeed present in the

where the solution behaves ®§q)eq%~?. Owing to rela-  pair correlation function, but disappear from the structure

tions (3.7), the value of integraf3.8) does not change if one function (1.6) owing to the relatiorS,=0 for r=0.

subtracts fronf(q,p) the first terms of its Taylor expansion e have already established in the end of Sec. Il that the

up to thenth order: model(1.1)—(1.3) becomes unstable dt= /3 and no steady-

state solution for the correlation function exists in the range

JdF (0, : . :
f dq[ F(q,p)_p(o,p)_qiﬂ_ o of small momentap<m. It is easily seen that expressions
a4 (3.6) for the inertial-range exponents diverge in this limit.
1 F(0p) The same singularity occurs in the first-order expressions for
_mqil"'qinﬁ D(q). (3.9 another exponents in our model; see, e.g., HGs2D)—
: Qi, o4, (3.25, (6.25, and(6.33 in subsequent sections. Moreover,

o ) ) the RG analysis shows that the actual expansion parameter is
Now one can sein=0 in the functionD(q), that is, replace g, *&/(d’—3) rather thare itself; see Eq(4.9) in Sec. IV.

. . . . . . *
the exact soLu(thon with its |r.1ert|all-range asympto'Flc EXPIES=rherefore, the higher-order terms of theexpansions be-
sion D(q)«xq~“"7: the possible divergence gt=0 is sup-

pressed by the expression in the curly brackets, which become more and_ more singular a_lsapproache&/g from
haves ag)"*2 for g— 0. Therefore, one can use the formal above anq any fln!te—order approximation cannot be trusted.
rules of analytical regularization and simultaneously omit the NUMerical solution shows that farclose to the threshold,
subtracted termf38]: this gives the correct answer for the € behavior of exponentg consists of two pronounced
convergent integral with proper subtractions in E3;9). stages. At the beginning, the exponents decrease rapidly as

We thus conclude that the exponef8ss) may appear in  INcreases in agreement with the f|rst-ord.er expression in Eq.
the full solution as correction terms; in the corresponding(3-6)- Then, for a very small value af (which tends to zero
integrals exact solution can be replaced with its powerlikeas d—+/3) the instantaneous stabilization takes place at an
asymptote and the resulting integrals are properly given bylmost constant valug,~2k—2, and fore =2 one hasyy
the rules of analytical regularization. =2k—2 exactly.

Our conclusions are in agreement with those drawn in For d=+/3 the solutions do not exist. This fact can be
Ref. [26] for the equation in coordinate space, although thenaturally explained, and extended to the other exponents, on
analysis in momentum space appears rather different. In pathe basis of the expansion. The series incan be rewritten
ticular, the momentum-space analysis reveals the close r@s series irg, *&/(d?—3), with coefficients regular ad?
semblance between the scalar and vector models: for the 3. Then they can be inverted into expansiongofin y
former, the correlation function in momentum representatiojmore precisely, iny—2k=0(e)], where the coefficients
also satisfies aimtegral equation and the above discussion isare also regular. In other words, the invertederies can be
needed to fix the convergence problem. It is also worth notwritten ase = (d?—3)f(y), wheref is a function regular as
ing that the procedure employed in RE26] for the calcu-  d— /3. Ford= /3 this givese =0, that is, no solution exists
lation of divergent integrals involves analytical continuationfor y if £>0.
from the region of convergence, and is therefore close to the
concept of analytical regularization.

Furthermore, the “realizability” of solutions(3.6) is B. Scaling behavior in anisotropic sectors
guaranteed by the fact that in the RG approach they are iden-
tified with the critical dimensions of composite operators eN-ie
tering into the corresponding operator product expansion%t
see Sec. V.

Besides powerlike solutions, E¢3.2) also possesses the NO =P ni -0 ] (3.12)
solution of the formd;; 6(p). To demonstrate this, we use the v ! !
well-known representation of thetdimensionals function

Now let us turn to the case of uniaxial anisotropy, speci-
d by an unit vecton in the correlation functiornl.2), and
roduce the following irreducibléth rank tensors

Here and belowpP,, denotes the irreducible part, obtained by
S(p)=lim J’ Dx(AX) ™7 exdi(px)] subtracting the appropriate expression involving the Kro-
o0 neckers symbols, such that the resulting tensor(ig traceless
_o-1,-dj P with respect to any pair of indices. In particuldv;™’=n;,
Sd P IE—ITO[O-(p/A) ] (31() Ni(jz):ninj_éij/d, Ni(ji)=ninjnk—(5ijnk+ 5iknj+5jkni)/
(d+2) and so on.
and substitute it into Eq.3.2). For smallo, the integral on It is easy to see that structur€3.11) are orthogonal on

its left-hand side is finite. Therefore it vanishes@as-0 in  the sphere:
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Jdn]\/(')/\/(s)=0 for 1#s, (3.12

where dn is the area element of the unit sphere in the

d-dimensional space.
The contraction of the tens@8.11) with a fixed vectomp
gives
N b, P =P'PI(2), z=(np)lp, (3.13

whereP,(z) =Z'+ O(Z'~?) are the Gegenbauer polynomials,

which reduce to the Legendre polynomials and trigonometr

cal functions in three and two dimensions, respectiya8j.
The relation(3.12 implies that these polynomials are or-

PHYSICAL REVIEW E 64 046310

JdnAii(P)(Pn)l=0, fdnAij(p)ninj(pn)"zzq
(3.17

with the integration over the unit sphere; cf. £§.12. Ow-
ing to the generalized orthogonality relati¢.14), the Ith
pair of equationg3.17) involves only the coefficient func-
tions A") and B(") with the same index, so that the equa-
tions for different values of have decoupled.

In the inertial range, the solution in thiéh sector is
sought in the formA®O=gp - d-!=n BO=pp-d-!=n
which corresponds t® (")(r)er” in coordinate representa-
tion; for the isotropic shelll=0, this reduces to the single
term (3.1). For =2, one obtains a pair of linear equations

thogonal on the sphere even if their arguments are differenfO” €ach pair of coefficienta, , b, :

for

J dnP(z)P4(z')=0 | #s, (3.19

wherez=(np)/p andz’=(np’)/p’ with any fixed vectorp
andp’.
In terms of the structure@.11) and transverse projectors

Pj; the desired decomposition of the pair correlation function

can be written as follows:

%m=§®%m, (3.19

where the summation runs over all even value$ and the
coefficient functions have the forms

DY(p)=Pii,(MIAV(P) 6 (M), i ,PisPi, - --Pi,)
+(B(')(IO)I02/\/i(|1)i2i_,,i4...iI Pi Pi, - - - Pi)IPii(p).
(3.16

Whatever be the coefficient functiods! and B, depen-
dent only onp=|p|, the expressiori3.16 is symmetric in
the tensor indices, j and orthogonal to the vectop:
PP} (p)=0.

The first tensor structure in E¢3.16) can be expressed in

clla+cb=0, cHa+clb=0 (3.18
where the coefficienté‘,g)ﬁ depend ore, d and the unknown
exponenty, . They all can be expressed in terms of the basic
integrals(3.3). In particular, forl =2 one obtains

CP=(d- 14— (d?-1)l,+dls,
cP=cP=—(d-1)T,+(d+1)l,—dls,
C@=(d—1)(d>~2)T,/2— (2~ 1)l ,+dlI5, (3.19

whereT;=1,+2J with J from Eq. (2.13 and | ,=1,(y,
—2,e+2). Thelth pair of equations involves integralg
=|,(y,—2,e+2) with n as high ad/2+2. The coefficients
g% for higher values of up tol =12 are given in Appendix

The desired equation foy, is obtained as the requirement
that the linear homogeneous systé&18 have nontrivial
solutions:

dejcl)|=o0. (3.20
For any givenl, the determinant can easily be written down

in terms of standard integrals, provided the coefficients are
known [see Eq(3.19 for =2 and Appendix A fol<12];

terms of the Gegenbauer polynomials using the relatioRnen ysing the explicit expressio3.3) for I, one obtains
(3.13, while the second structure can be expressed in termganscendental equations similar to E8.5) but much more

of the polynomialsP,(z) and their derivatives using the re-
lation

2

I(1=1)NO)

|
sigigig iy PigPiy - Py [P'P(2)],

~op;,ap;,
which is obvious from the definitiof8.11) and the the rela-
tion (3.13.

Substituting the serieg@.15) into the zero-mode analog of

Eqg. (2.16 then gives the equation for the coefficient func-

tions A and B("), which can be symbolically written as

cumbersome. We shall not write them down explicitly for
the sake of brevity and turn to the corresponding solutions.
It is also worth noting that fok=4 the formal divergence
of the integrals in Eq(3.2) occurs already for the leading
exponents and the discussion, similar to that given in Sec.
Il A, is needed to justify the use of analytic regularization.
For d=2, the two structures in Eq3.16) coincide and
the determinant deE'})| vanishes identically. We shall re-
turn to this case in the end of the section, and from now on
we assumel# 2.
For any gived =2 and smalk, all possible solutions for

Aij(p)=0. Its left-hand side can be decomposed using thé¢he exponentsy, can be written in the formy,=(I-2

same tensor structurg8.11), so that the equation can be
reduced to an infinite family of the scalar equations

+2k) +0O(e) with k=0,1,2 . ... Theleading exponent cor-
responds t&k=0; it is unique for anyt=2 and has the form
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'y|=(|—2)|1+8

(d+2)(1—-3)(d?>—4d+2ld+12—5|+4)
(d?—3)(d+21—6)(d+2l—4)(d+2I—2)

+0(&?) . (3.2)

For allk=1, there are exactly two solutions. Hoe 1, they
can be written as

PHYSICAL REVIEW E 64 046310

where the slopes.. satisfy the quadratic equation
x2(d+21—4)(d+21)—[d*+ (41 —5)d3+ 4(1%— 4] + 2)d?
+(—413=212+14 - 4)d—21(1-1)(1-2)(31 +1)]x
—1(1-=1)(d+1—-1)[d®*+ (31 -5)d?
+(212=11+8)d+2(—I3+1%2+31—2)]=0.
In particular, forl =2 this gives
x.={d*+3d’-8d— 16
+\J(d+4)(d°+2d*—7d%—4d?+8d+ 16)}/2(d+ 4).

(d+2)x. 5 (3.23
v=l—¢ +0(&9), (3.22 .
(d?=3)(d+21—-2) For k=2, the solutions have the form
|
(d+2)[—d*+(2—61)d®+(3+91 —11?)d?+ (— 6+ 6l +1612—61%)d+1(12—1)(I +10)] 5
’)/|:(|+2)+8 > +O(8 ),
(d2=3)(d+21—2)(d+21)(d+2l+2)
y|=(|+2)—sw+0(82). (3.29

The situation simplifies for ak=3: then the solutions in
orderO(e) are degenerate and have the form

(d—1)(d+2)

v=(1-2+2k)—¢ (@—3)

+0(e?), (3.25

(d?

-3)

Nonperturbative solutions for intermediate valueg dife-
tween 0 and 2 can only be obtained numerically. We have
performed the calculation in two and three dimensiond for
=<12; the results are illustrated by Fig. 2 flor 2, 8, and 12.
Ford=3 andl=<10, our solutions are in agreement with the
results presented in Fig. 2 of R¢R6], except for the case

that is, the slope is the same as for the second solution in E¢)=2: the behaviors of the solutiong,=2+0O(e) and vy,

(3.24 and the standard slop@.6) for the isotropic sector.
However, the degeneracy is removed by tés?) terms,
and the two solution$3.25 do not coincide identically.

At the opposite edge; =2, all the solutions can also be
found analytically for any giveh=2. They take on the val-
uesl—2 (single, I, | +2, I+4, and so ontwofold degen-
eracy ford#2 and single otherwigeIn addition to these
“standard” values, for alll=2 there are exactly two
d-dependent solutionsy;” ; they satisfy certain quadratic
equations and have the forms

., d 1\/d3+4ld2—d2—4ld+4lzd—8l+4I2
NTTT2 -1 '

~_d 1\/d3+4ld2—9d2—4ld+4I2d+8—8I+4I2
N="3%3 d-1
(3.26

(only one solution of each equation is admissjbMote that
v, >y, for all | andd>1. For larged, exponents3.26
behave asy,” =1+0(1/d) and y; =1—2+0(1/d), respec-
tively, so that all solutions become “standard” @ oo.

=4+0(e) are different. We believe that this disagreement
is not conceptual and is explained by calculational errors in
Ref.[26]. For the sake of brevity, we do not give the solu-
tions forl=4, 6, and 10, which in three dimensions are in
agreement with Ref.26]. The exponenty=0 for |=2 cor-
responds to the solutigns;; —dn;n;] 6(p), which exists for

all d (see Sec. Il A.

The figures illustrate the following qualitative behavior of
the solutions, which holds for all#2 andl=2. The leading
solution(3.21) exists for alle and turnstd —2 fore=2. In
fact, it is hardly distinguishable from a constani~I1—2,
for all values ofe (y,=0, see Sec. Ill A

For anyl, some critical valu&.=k.(l,d) exists such that

for all k>k. the behavior of the solutiony,=I—-2+2k
+O(e) is simple: the both solutions exist for al| decrease
slowly ase grows and turn toy,=1—4+2k for e=2. (In

fact, the both solutions corresponding to gieandk are
very close to each other for all values ©f

For fixedl, the critical valuek, decreases asincreases,
so that all solutions wittkk=1,2, . .. become simpléin the
above sengeprovidedd is large enough. For fixed, the
critical valuek; increases witH; in particular, in three di-
mensionsk,=2 for =2, 4, 6,k.=3 for |=8, 10, andk,
=4 forl=12.
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FIG. 2. Leading scaling exponents for the secter®, 8, and 12from above to belowin d=2 (left) andd=3 (right). Dashed lines
denote solutions that exist as limits—2 but disappear in two dimensions.

An interesting interaction between the solutions with aprocesses can produce a very complicated pattern, as illus-
fixed | and differentk occurs for kk=<k.. Two branches trated by Fig. 2 for the sectots=2, 8, and 12see also Fig.
starting ate =0 with different values ok can coalesce and 2 in Ref.[26]).
disappear for some value a@f between 0 and 2. Another It turns out, however, that the creation and annihilation of
possible process is the creation of a pair of solutions fosolutions eventually compensate each other in the sense that
some G<e<2. A solution that starts at=0 can annihilate the number of branches starting @0 with 0<k<Kk, is
with a solution from a pair that was created for some finiteequal to the number of branches arrivingeat 2 and con-
value ofe. The interplay between these creation-annihilationfined between the leading solutioy,&1—2 for e=2) and
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the lowest “simple” solution ,=1—4+ 2k, for e=2). The TABLE I. Canonical dimensions of the fields and parameters in
balance is possible owing to the existence of two “nonstandthe model(2.1).
ard” solutions(3.26) at the edges=2. They also determine

the boundary between the solutions with “simple” and “in- F 0 o' v. rnwrv mu A g g
teresting” behavior: the uppermost solution with the interest- 0 d 1 9 1 e 0
: - F

ing behaV|or,y|_=I—2+ 2kc+O(e_), tL:rns to yf’” ate=2. de —12 1/2 1 1 0 )
(Some reservations are needed if a “standard” solutioa at 1 d+1 1 0 1 e 0

=2 lies between the rootg™ or coincides with one of them.
In particular, ford=3 and|=2, the standard solutiory,
=2 exists but is isolated in the sense thatreal branches .2 put some of them should be ruled out due to linear

attach it from the regiore<2. Ford=3 and|=12, one relations between composite operators that hold in two
obtainsy,,=16, and this standard value acquires threefolddimensions.

degeneracy
The bghawor eventu_ally S|mpllf|es in the limdt—oo. All IV. RENORMALIZATION, RG FUNCTIONS,
the solutions become simple in the above sense and they are AND RG EQUATIONS
described by straight lineg;=1—2 for the leading solution
andy,=1—2+2k—¢ for all k=1. The analysis of the UV divergences is based on the analy-

The annihilation of coalescing solutions actually meanssis of canonical dimension37,38. Dynamical models of
that they become complex: the effect known for the magneti¢he type(2.1), in contrast to static models, have two scales,
model [27], where it occurs in the isotropic shell. It was so that the canonical dimension of some quarkity field or
argued in Refg.27,29 that the complexification leads to the a parameter in the action functiopas described by two
instability of the steady stat@xponential growth of the pair numbers, the momentum dimensidé and the frequency
correlation function We shall not discuss this important is- dimension d?. They are determined such thdtF]
sue here and only stress an essential distinction between thwe[

two cases. In the magnetic mo<_jel, theading gdm|SS|bIe time scale. The dimensions are found from the obvious nor-
exponent y=0(e) coalesces with the solutiony=—d malization conditionsd‘= —d*=1 d®=d®*=0. d*=dk
+0(e), which is not admissible and describes the large- o o X o x o Ce
. =0, d;=—d{=1, and from the requirement that each term
scale behavior at>L [see the remark and references below . i . i X
of the action functional be dimensionlessith respect to the

Eqg. (3.5]. In models(1.1)—(1.3) the coalescence occurs only momentum and frequency dimensions separateThen

in anisotropic sectors and only faronleading admissible . ;
P y 9 pased ond¥ anddg, one can introduce the total canonical

exponents. If the steady state remains stable, the inertia

. . _ k w . .
range behavior in the corresponding sectors will include osdimensiondg=dg+2dg (in the free theoryg;>A), which

cillations on the powerlike background; compare the discusP!@ys in the theory of renormalization of dynamical models
sion in Ref.[13]. the same role as the conventiorf@iomentum dimension

In two dimensions, the tensor structures in decompositiof§0€S in static problems8].

(3.16 become coincident, and the determinandﬁgy in The dimensions for the modé€2.1) are given in Table I,

. . . . ) including the parameters that will be introduced later on.
Eq. (3.20 vanishes identically. All the coefficients,; for .0 he taple it follows that the model is logarithmitbe
d=2 become equal up to the sifilsee Eq(3.19 for | =2].

X s coupling constang, is dimensionlegsat e =0, so that the
Therefore, the equation for the exponemfscan simply be v/ givergences have the form of the polessiin the Green
written as

k w
L] 9[T] 9, wherelL is the length scale and is the

functions.
0 The total canonical dimension of an arbitrary one-
Cii=0. (327 irreducible Green functioh =(®- - - ®),_, is given by the
relation

All solutions of thed-dimensional equatio(8.20 have well-

defined limits asd— 2, and all true two-dimensional solu- dpzdF+2d§’=d+2—N¢d¢, (4.1
tions are indeed recovered in this limit. However, this limit

gives more solutions than the correct two-dimensional equashereNg={N, ,N,,N,} are the numbers of corresponding
tion: one-half of the solutions obtained in the lindt=2  fields entering into the functiohi, and the summation over
from the d-dimensional case do not satisfy E®.27) and  all types of the fields is implied. The total dimensidp is
should be discarded. This behavior is illustrated by Fig. 2the formal index of the UV divergence. Superficial UV di-
where the solid lines on the diagrams wilx=2 andl=2  vergences, whose elimination requires counterterms, can be
denote solutions obtained both from the two-dimensionapresent only in those functions for which di- is a non-
equation(3.27) and as limitsd—2 from d-dimensional so- negative integer.

lutions, and the dashed lines denote spurious solutions that Analysis of the divergences should be based on the fol-
are obtained in the limitl—2 from Eq.(3.20, but do not lowing auxiliary considerationgl6,17).

satisfy equatior(3.27). We shall see in Sec. VI C and VI D (i) From the explicit form of the vertex and bare propa-
that similar effect is encountered in the RG and OPE apgators in the mode(2.1) it follows that N, —N,=2N, for
proach: all critical dimensions have well-defined limitscas any one-irreducible Green function, wheMg=0 is the total
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number of bare propagato{g6), entering into the function This is equivalent to the requirement that;(p) be finite;
(see Sec. )l Therefore, the differenchl,, —N, is an even its pole part is independent pfand is therefore contained in
non-negative integer for any nonvanishing function. Eq. (2.14. This gives

(ii) If for some reason a number of external momenta
occurs as an overall factor in all the diagrams of a given B (d?—3)
Green function, the real index of divergendg is smaller 2,=1-9Cq 2d(d+2)e’
than dr by the corresponding numbéthe Green function
requires counterterms only @ is a non-negative integer ~ With coefficientCg from Eq.(2.11). The result(4.4) is exact,
In the model(2.1), the derivatived at the vertexg’(vd)#  I-€., it has no corrections of ordg?, g°, and so on; this is a
can be moved onto the fieldl by virtue of the transversality consequence of the fact that the one-loop approximation
of the fieldv. Therefore, in any one-irreducible diagram it is (2.7 for the response function is exact. Also note that ex-
always possible to move the derivative onto any of the expression(4.4) differs from the exact expression f@, in the
ternal “tails” @ or ¢’, which decreases the real index of scalar[8] and magneti¢23] cases.

(4.9

divergenced;=dr—N,—N, . The fields¢, ¢’ enter into The relation S(®,ep)=Sg(P,e,u) (where e
the counterterms only in the form of derivatives, 76’ . ={9o.vo,m} is the complete set of bare parameters, end
From the dimensions in Table | we fidk=d+2-N, =1{9,».m} is the set of their renormalized analogsiplies

+Ny—(d+1)N, and d-=(d+2)(1-N,)—N,. It then W(A,e)=Wg(A,e,u), whereWis the functional2.2) and
follows that for anyd, superficial divergences can only exist Wr i its renormalized counterpart obtained by the replace-
in the one-irreducible function§6’6 . ..#0); ; with Ny mentS— Sg. We useD,, to denote the differential operation
=1 and arbitrary value oN,, for which dr=2, dj.=0.  ud, for fixed ; and operate on both sides of this relation
However, all the functions Wit|N0>N0, vanish(see abov)e with it. This giVGS the basic RG differential equation

and obviously do not require counterterms. We are left with

the only superficially divergent functioQ’ #), _;., which DrcWr(€,1) =0, (4.9
does not depend on the correlation functid@m?) and there- -

fore is isotropic; see Sec. Il. The corresponding counterternvhere Drg is the operatiorD,, expressed in the renormal-
must contain two symbolg, and owing to the isotropy and ized variables:

transversality conditions reduces to the only struciii& 6.

Inclusion of this counterterm is reproduced by the multi- Dre=Du+tB(9)dg— 7,(9)D, . (4.6
plicative renormalization of the parameteyg, vq in the
action functional(2.1) with the only independent renormal-
ization constan?,:

In Eq.(4.6), we have writterD,= x4, for any variablex, and
the RG functiongthe 8 function and the anomalous dimen-
sion ) are defined as

— — & _—7-1 -
vo=vZy, Go=Qu'Zg, Zg=Z,". (4.2 ye(9)=D,InZ forany Zg, (4.79
Here u is the reference mass in the minimal subtraction —D geal—e+
(MS) scheme, which is always used in what follogsand » B@=D.g=0l-s+7,(9)]
are renormalized analogs of the bare paramejgrand v,
and Z=Z7(g,e,d) are the renormalization constants. Their
relation in Eq.(4.2) results from the absence of renormaliza-
tion of the last term in Eq(2.1). No renormalization of the
fields and the “massinis required, i.e.Z4 =1 for all ® and
moe=m. The renormalized action functional has the form —&DyInz, (d2—3)

Q)= 1-Dginz, 9-92d(d+2)’

(4.7b

The relation betweep andy in Eq. (4.7b results from the
definitions and the last relation in E¢.2). From the rela-
tions (4.4) and(4.7) one obtains explicit expressions for the
RG functions:

(4.8
Sr(®)=0"D,0' 12+ 0'[ -V +vZ,A16—v D, 'v/2,

4.3 From Eq.(4.7b it follows that the RG equations of the

model have an IR stable fixed poipB(g,)=0, B'(9,)

where the amplitud®, from Eq. (1.3) expressed in renor- ~0] with the coordinate

malized parameters using Ed4.2): Dy=govo=gu°v.

The explicit form of the constar®, is determined by the 2d(d+2)e
requirement that the one-irreducible functioé’ ), _;, ex- g, =——————.
pressed in renormalized variables be UV firite., be finite Cq4(d2—3)
for e—0). This requirement determings, up to an UV
finite contribution; the latter is fixed by the choice of the From the relation between the RG functions in E47b the
renormalization scheme. In the MS scheme all renormalizavalue of y,(g) at the fixed point is found exactlyy’
tion constants have the form “% only poles ing.” The =vy,(04)=e.
function (8’ #),_; in our model is known exactly; see Eqs.  For d?<3, the fixed point is negative and therefore not
(2.9—-(2.149 in Sec. Il. We substitute Eq$4.2) into it and  accessible for the RG flow with physicgbositive initial
chooseZ,, to cancel the pole i in the resulting expression. data forg. This is in agreement with the conclusion of Sec. Il

4.9
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that no stable steady state exists in the modetifer 3 [see
the discussion below Eq2.16)].

For d?>>3, the fixed point is positive; this establishes the
existence of scaling behavior in the IR regiofr&1 and
any fixedmr) for all correlation functions of the model. Let
F be some multiplicatively renormalized quantisay, a cor-
relation function involving composite operatprs.e., F
=ZFg with certain renormalization constant . It satisfies
the RG equation of the forfiDgg+ v ]Fr=0 with v from
Eq. (4.7a@ and Dgg from Eq. (4.6). The solution of the RG
equation then shows that in the IR regiéntakes on the
scaling form

(4.10

F=A—%D%F 12 g(mn),
where

A,=2—vy} (4.11

is the critical dimension of the functidf, d¢, anddg are its
frequency and total canonical dimensiong, = yg(g,) is
the value of its anomalous dimension at the fixed pal,
=2—yy=2—¢ is the critical dimension of the frequency,
and &g(mr) is the scaling function whose form is not deter-
mined by the RG equation itself. Derivation of E@.11)
and more detail can be found in Ref44,16,17,38 In par-
ticular, for the structure functionél.6) with de=0, d¢=
—n/2 (see Table)land yf =0 (see Sec. VJlone obtains

(4.12

so that the dependence on the UV scaleisappears, while
the dependence on the IR scatds contained in the scaling
functions&,(mr).

Ap=df+A, d2+ yE,

Sn(l’) — Dan/Z rﬂ(l—s/Z) gn(mr)'

V. OPERATOR PRODUCT EXPANSION AND
ANOMALOUS SCALING

Representation$4.10—(4.12 for any scaling functions
&(mr) describe the behavior of the correlation functions for
Ar>1 and any fixed value aihr. The inertial range corre-
sponds to the additional conditianr<1. The form of the
functions £&(mr) is not determined by the RG equations
themselves; in analogy with the theory of critical phenom-
ena, their behavior fomr—0 is studied using OPE; see
Refs.[37,38. Below we concentrate on the equal-time struc-
ture functions(1.6) and (4.12).

According to the OPE, the behavior of the quantities en
tering into the right-hand side of E¢L.6) for r=x—x'—0
and fixedx+x' is given by the infinite sum

!

X+ X )
t——] 6.1

[0r<t,x>—er<t,x')]“=; Cr(r)F

where Cg are coefficients regular im? and F are all pos-

PHYSICAL REVIEW E 64 046310

In what follows it is assumed that the expansion is made
in irreducible tensor¢scalars, vectors, and traceless tensors
the possible tensor indices of the operatérare contracted
with the corresponding indices of the coefficie@s. With
no loss of generality, it can also be assumed that the expan-
sion is made in “scaling” operators, i.e., those having defi-
nite critical dimensiona\ ¢ (see Sec. Vl

The structure function$l.6) are obtained by averaging
Eqg. (5.1 with the weight ex@Sg, the mean valueéF) ap-
pear on the right-hand side. Their asymptotic behavior for
m— 0 is found from the corresponding RG equations and has
the form(F)ocm?F.

From the RG representati@s.12 and the operator prod-
uct expansion(5.1) we therefore find the following expres-
sion for the structure function in the inertial rangére1,
mr<1)

Sa(r) =Dy M2 r"@=eD 3 Ac(mr)(mn)F, (5.2
F

where the coefficientdg are regular in fnr)?2.

Some general remarks are now in order.

Owing to the translational invariance, the operators hav-
ing the form of total derivatives give no contribution to Eq.
(5.2: (dF(x))=d(F(x))=dX const=0 (these operators be-
come relevant if the stirring force in Eql.1) violates the
translational invariance, like in the problem discussed in Ref.
[40]).

In the modelq1.1)—(1.3), the operators with an odd num-
ber of fieldsé also have vanishing mean values; their con-
tributions vanish along with the odd structure functions
themselvedthey will be “activated” in the presence of a
nonzero mixed correlation functiofvf); we shall not dis-
cuss this possibility heje

If the tensorC;j;(r) in Eq. (1.2) is taken to be isotropic,
the model becomes S@) covariant and only the contribu-
tions of the scalar operators survive in E§.2). Indeed, in
the isotropic case the mean value of a tensor operator de-
pends only on scalar parameters, its tensor indices can only
be those of Kronecke$ symbols. It is impossible, however,
to construct nonzero irreduciblgraceless tensor solely of
the 6 symbols.

In the presence of anisotropy, irreducible tensor operators
acquire nonzero mean values and their contributions appear
on the right-hand side of E@5.2). Like in Sec. Ill, consider
the case of the uniaxial anisotropy, specified by a unit vector
n in the correlation function1.2). In this case, the mean
value of alth rank traceless operator involves the veator
along with thes symbols and is necessarily proportional to

the Ith rank symmetric traceless tensaf{ ; from Eq.
(3.11. The contraction with the corresponding coefficient
Ck gives rise to thdth order Gegenbauer polynomig|(z)

with z=(rn)/r; see Eq.(3.13. In general, the expansion in

sible renormalized local composite operators allowed by théreducible tensors in Eq5.1) after the averaging leads to
symmetry. More precisely, the operators entering into thehe SO@) decomposition employed in Ref®6,30, thelth
OPE are those that appear in the naive Taylor expansion, arghell corresponding to the contribution of thié rank com-

all the operators that admix to them in renormalization.

posite operators.
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The feature characteristic of the models describing turbuthe naive sum of critical dimensions of the fields and deriva-
lence is the existence of the so-called “dangerous” compostives entering intd=. As a rule, composite operators “mix”
ite operators withnegative critical dimensions; see Refs. in renormalization, i.e., an UV finite renormalized operator
[16,17. Their contributions into the OPE give rise to singu- FR has the fornFR=F + counterterms, where the contribu-
lar behavior of the scaling functions fonr— 0, that is, the tion of the counterterms is a linear combinationFoitself
anomalous scaling. The leading term in tlie anisotropic  and, possibly, other unrenormalized operators that “admix”
sector is given by théth rank tensor operator with minimal to F.

(not necessarily negatiyelimensionA[ F]. Let F={F,} be a closed set, all of whose monomials mix

SinceAg=dg+O(e), see Eq(4.11), the operators with only with each other in renormalization. The renormalization
minimal A are those involving maximum possible number matrix Zg={Z,;} and the matrix of anomalous dimensions
of fields ¢ and minimum possible number of derivativied  ye={v.p} for this set are given by
least for smalle). Both the problem(1.1)—(1.3 and the
quantities(1.6) possess the symmet#— 6+ const. It then

_ R _ >—15
follows that the expansiofb.1) involves only operators in- Fa_zﬂz ZagFp Yr=Zr Dulr, 6.D
variant with respect to this shift and therefore built of the
gradientsof 6. and the corresponding matrix of critical dimensioAs

As already mentioned above, the operators entering int%{AaB} is given by Eq.(4.1D, in which dllg and d¢ are
the right-hand side of Eq(5.1) are those that appear in the \,nqerstood as the diagonal matrices of canonical dimensions
_Tay_lor expansion, and those that admix to them_ in ren_ormalbf the operators in questiofwith the diagonal elements
ization. The leading term of the Taylor expansion &ris  equal to sums of corresponding dimensions of all fields and

the 2nth rank operator that can symbolically be written asyarivatives constituting®) and y£=ys(g,) is the matrix
(00)"; its decomposition in irreducible tensors gives rise t°(6.1) at the fixed point4.9).

operators of lower ranks. These contributions exist in the itical dimensions of the sd={F,} are given by the
OPE (before averagingeven if the stirring force in not in- eigenvalues of the matriar. The “basis” operators that

cludeql into I_Eq(l._l); in the Ianguage of Ref@l—B] itis then_ possess definite critical dimensions have the form
tempting to identify them with zero modes, i.e., the solutions

of the homogeneouginforced analogs of the closed exact

equations satisfied by the equal-time correlations. In the FgaszE UQBFE, (6.2
presence of the stirring force, operators of the fors) P

with k<n admix to them in renormalization and appear in ) ) , 1.

the OPE; their contributions correspond to solutions of thevhere the matrbUg={U 4} is such that\ g =UrAgUg " is
inhomogeneous equations. Owing to the linearity of problenfliagonal. .

(1.1), operators withk>n (whose contributions would be In general, counterterms to a given opereffoare deter-
more important do not admix in renormalization to the mined by all possible qne-wreduuble Gree_n funct_|ons with
terms of the Taylor expansion f&, and do not appear in the ©On€ operator= and arbitrary number of primary fields;
corresponding OPE. All these operators have minimal pos= (F(X)®(X1) ... P(X2))1—ir. The total canonical dimen-
sible canonical dimensiotie =0 (see Table)land determine ~ Sion (formal index of UV divergencefor such a function is
the leading terms of thenr— 0 behavior in the sectors with 9iven by

j=<2n. Operators involving more derivatives than fields
(and thus having canonical dimensiafis=1, 2 and so on
determine correction terms fgi=x2n and leading terms for . i i .
higher anisotropic sectors with>2n. The renormalization with the summation over all types of fields entering into the

and dimensions of the most important operators are studie nctlt_)n. _For superflmally divergent diagramt; is a non-
in the following section. negative integer; Cf.' Sec. lV:
Let us begin with the simplest operators of the form

0"(x), with free tensor indices or involving any contraction.
VI. RENORMALIZATION AND CRITICAL DIMENSIONS From Table | in Sec. IV and Eq6.3) we obtainde=—n

OF COMPOSITE OPERATORS dp=—n+Ny—Ny—(d+1)N, .

We recall that the term “composite operator” refers to From the analysjs of the diagrams it follows t.hat the. total
any local(unless stated to be otherwjsmonomial or poly- numperNH of the fields# entering into the one-irreducible
nomial built of primary fields and their derivatives at a single function I'=(6"(x) 6(x,) - - - #(xy,))1-ir cannot exceed the
space-time poink=(t,x); see Refs[37,38. Since the argu- number of the field® in the operatord” itself, i.e.,N,<n
ments of the fields coincide, correlation functions with suchlcf. item (i) in Sec. IV]. Therefore, the divergence can only
operators contain additional UV divergences, which are reexist in the functions wittiN,=N, =0, and arbitrary value
moved by additional renormalization procedure. For theof n=N,, for which the formal index vanishesl=0.
renormalized correlation functions the RG equations are obHowever, at least one M, external “tails” of the field 0 is
tained, which describe IR scaling of certain “basis” opera-attached to a verted’ (v )0 (it is impossible to construct
tors F with definite critical dimension&=A[F]. Due to  nontrivial, superficially divergent diagram of the desired type
the renormalizationA[ F] does not coincide in general with with all the external tails attached to the verte, at least

dr=dr—Ngdg, (6.3
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one derivatived appears as an extra factor in the diagram,from Eq.(1.5) arises due to the fact that the differentiation in
and, consequently, the real index of divergedgeis neces- Ed. (6.5) is performed with respect to a transverse field; see
sarily negative. the remark below Eq2.1).

This means that the operataf8 require no counterterms ~ The quantity((F)), is the generating functional of the
at all, i.e., they are in fact UV finiteg"=2Z[ "R with Z correlation functions with one operatbrand any number of
=1. It then follows that the critical dimension @f"(x) is  fields @, therefore the UV finiteness of the operatéris
simply given by the expressio.1]) with no correction equivalent to the finiteness of the functiond@F)),. The
from y§ and is therefore reduced to the sum of the criticalquantity on the right-hand side of E¢6.6) is finite (a de-
dimensions of the factorsA[ #"]=nA[#]=n(—1+¢/2). rivative of the renormalized functional with respect to a finite
Since the structure functiori4.6) are linear combinations of argumenk, and so is the operator on the left-hand side. Our
pair correlation function involving the operato#s, this re-  operatorF; does not admix in renormalization to the opera-
lation shows that they indeed satisfy the homogeneous R¢pr 6'D 46 (F; contains too many fields), and to the op-
equation(4.5), discussed in Sec. IV. eratorsV [ 6%/2], 4;[ 6;P] and A[ #°/2] (they have the form

In the OPE for the pair correlation function, analogous toof total derivatives, ané; does not reduce to this fopmOn
Eq. (5.2, the operatorg? and 6,6, with the dimensions 2 the other hand, the operatof5D ,6 and 4[ 6;P] do not ad-
(—1+¢/2) give rise to constant terms. They correspond toMix to F; (they are nonlocal, ané; is loca), while the
the solutions withd(p), discussed in the end of Sec. Ill. derivativesV [ 6%/2] and A[ 6%/2] do not admix toF; owing
Such terms, caused by various operators of the féfpare  to the fact that each field enters into the counterterms of
also present in higher-order correlation functions. They disthe operatorsF,, only in the form of derivativedd (see
appear from the structure functiori¢.6), whose inertial- ~above. Therefore, all three types of operators entering into
range behavior is determined by operators built only of grathe left-hand side of Eq6.6) are independent, and they must
dients(see Sec. V. be UV finite separately.

Since the operatorZ ,F, is UV finite, it coincides with
its finite part, i.e.pZ F,= vF?, which along with the rela-

_ o _ tion F;=Z2,FR givesZ,=Z, " and thereforey,=— vy, . For
The leading terms of the inertial-range behavior of they . .iitical exponent, =+ y* we then obtaim\,;=0 ex-

Se_c_ond-c_)rder _structure functios, are determined _by the actly (we recall thaty® =¢; see the discussion below Eq.
critical dimensions of the composite operators built of two(4 9 in Sec. IV v

gradients: It then follows from Eq.(5.2) that the leading term of the
F1=0,0,0,6;, F,=0,6,0;6,. (6.4)  inertial-range behavior of the second-order structure function

has the formS,=D,*r?¢, in agreement with the solution
For the transverse field, the second operator reduces to a)’=2—§ Obtain'ed ip Sec. Il from the exact_ equation. There-
total derivative,F,=d,d;(6;6;), and its dimension,=2 fore, this function is not anomalous, like its analog for the
+2A,=¢ does not appear on the right-hand side of Eg.calar mode[3-5], and the anomalous scaling reveals itself

A. Scalar operators of the form (#0)? and the scaling ofS,

(5.2). only on the level of the fourth-order structure function.
The dimension of the first operator is found exacthy

=0. This can be demonstrated using the Schwinger equation B. Scalar operators of the form (96)*

of the form and the anomalous scaling of5,

5 Let us turn to the scalar composite operators built of four
_ gradientsg @, which cannot be reduced to the form of total
! + = . o ) = o .
J be 56! ){0'(X)equR(®) APJ}=0 (6.5 derivatives. This family includes six independent monomials,
all of which can be obtained from the fourth rank operator

(in the general sense of the term, Schwinger equations ai®ijii” = di0mdj0ndkfyd 05 by various contractions of the
any relations stating that any functional integral of a totaltensor indices:

variational derivative is equal to zero, see, e.g., Refs. ikl kK ijkk ik
[37,38). Here Sy is the renormalized analog of the action Fi=®jic, Fo=@Pjir,  Fa=®j0,  Fa=®j,
(2.1), and the notation introduced in E@®.2) is used. Equa- i ik

tion (6.5) can be rewritten in the form Fs=Pyiki,  Fe=Pjji - (6.7

((0'D ,0—V [ 0%12]— &, 6P+ vZ,A[ 6212]— vZ,F 1)) a At first glance, it s_eklems that one can add another independent
monomial,F,=®li, , but in fact it reduces t&, up to total

== Ay SWR(A)/6A,. (6.6 derivatives
Here D, is the correlation function(1.2, 6#?=6,6;, 3F1_6F7:ai[_60kq)§g;;+30k¢)2|i<sp+20i(b§|85]:
((...))a denotes the averaging with the weight (6.9

exgSgr(P) +Ad], Wy is determined by Eqg(2.2) with the
replacementS— Si, and the argument common to all the where the notation is analogous to that in E&7); see Ref.
quantities is omitted. The contribution with the pressiite [41].
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Now let us turn to the calculation of the renormalization to its elements, andfter the differentiatiorthey are replaced
constants for the family6.7) in the one-loop approximation. back with the gradientsa;; — d; 6;(x).

Let I',(x;0) be the generating functional of the one-
irreducible Green functions with one composite oper&tgr

from Eq.(6.7) and any number of field8. Herex=(t,x) is

the argument of the operator amdis the functional argu-

ment, the “classical counterpart” of the random fieddWe
are interested in the fourth term of the expansioil’ gfx; 6)
in 9, which we denotd™(*)(x; 6). It has the form

1
00 =7 J dxy - - J Ay 6;,(x) - - - 61 (Xa)

X(Fo(X) 0 (X1) -+ 05 ,(Xa) ) 1—ir -

Using the identityd, 5;;(x—x") = — 9, 6;;(x—x") and the
integration by parts, the derivatives can be moved from the
vertex onto the propagators, and the integrations with respect
to x; andx, are then easily performed:

I°F (@)

PR dXsJ dxg(di, 0;,(X) 6] (X3))o( i, 0 ,(X)

X 6] (X))o vig(X3)vi (Xa) )odi 0, (X3) di 01 (Xa).

(6.13

In order to find the renormalization constants, we do not

In the one-loop approximation this function is representecheed the entire exact expressi$13, rather we need its

diagrammatically as follows:

Ii(z;0) = F, + 6.9

Ay

Here the thin solid lines denote thare propagator 46’ ),

N =

UV divergent part. The latter is proportional to a polynomial
built of four factorsgé at a single space-time point The
needed four gradients have already been factored out from
the expressioi6.11): two factors from the vertet6.12) and

two factors from the ordinary vertice®.3). Therefore, we

from Eq.(2.4a, the ends with a slash correspond to the fieldcan neglect the space-time inhomogeneity of the gradients

#', and the ends without a slash correspond;tdhe wavy

line denotes the velocity propagatdr.3); the vertices corre-
spond to the factof2.3). The first term is the “tree” ap-
proximation, and the black circle with two attached lines in

the diagram denotes the variational derivative
VI (XiX1 Xo) = 6°F (X)) 86, (X1) 86 (x2).  (6.10)

The diagram is written analytically in the form

f dx1~~-fdx4vi(ﬁ)2(x;x1,x2)
X(0;,(%1) 67 (X3))of 01, (X2) 6] (Xa) )
X (i (X3)vig(Xa))odig 0i,(X3) di 0 (Xa),
(6.1))

with the bare propagators from Eq4.3) and(2.4); the de-
rivatives appear from the ordinary vertices3). It is conve-
nient to represent the vertdé®.10 in the form

&°F (a
V@ (x:xq,X,) = (a) d;. 6

i1l a3 oa . 1 sis (X=X2),

(6.12

isig

(X=X1)d;,6

where

5ij(X_X,)E5(t_t,)Pij(X_X/): 5(t_t,)
xf DkP;j(k)exdik- (x—x")]

is the § function on the transverse subspace. The fisn-

binatoria) factor in Eq.(6.12) is understood as follows: the

and replace them with their values at the poinExpression
(6.13 can therefore be written, up to an UV finite part, in the
form

I7I1I3I8I2I4I5I6’

9°F ,(a)
mﬁi59i3(x)5i69i4(x)x
71 8'2

(6.19

where we have denoted

X|7|1|3|8|2|4|5|65f dX3f dX4<‘9i70i1(X)ai,3(x3)>0<‘9i80i2(x)

(6.19

X 0], (Xa))o{vig(X3)vi(Xa))o

or, in the momentum-frequency representation, after the in-
tegration over the frequency,

Do

Dk ki Kig
fWPi1i3(k)Pi2i4(k)Pi5i6(k)?.
(6.16
with D, from Eq. (1.3). Using the isotropy relations

kil- ) 'kizn
f Dk f(k)T
81,0, 5i2n71i2n+(all possible permutations
- d(d+2)---(d+2n—2)
xf Dk f(k) (6.17

gradientss; 6;(x) in the operatoF , are replaced with a con- the integral (6.16 can be reduced to the simple scalar
stant tensog;; , the differentiation is performed with respect integral
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with C4 from Eq.(2.11); the parametem has arisen from the
lower limit in the integral ovek. The explicit answer for the
quantity (6.16) is given in Appendix B.

Contraction of thes symbols with the first factors in Eq.
(6.14) gives rise to various monomials built of four gradients

Dk B m ¢

e Cap 6.18

of 6; up to total derivatives, they reduce to the operators

from the family(6.7). Then the functiod(*)(x; 6) from Eq.
(6.9 in the one-loop approximation of the renormalized per-
turbation theory(i.e., to the first order ing) up to an UV
finite part can be written in the form

gCqy

rg4>(x;a)=Fa+T(u/m)gRa, (6.19

where u has appeared from the relati@y,=gyvo=gvu’®
and

Re=> AusF s (6.20
B

are linear combinations of the monomi&&7) with the co-
efficientsA,, ; dependent only onl:

_ (3d*+22d+36)F, 2(d+3)F,
=~ 4(dT2)(d+4)(d+6) T d(d+2)(d+4)(d+6)
6F, 2(d+5)F,

T d(d+2)(d16)  (d+2)(d+6)
4(d+3)F5 4F

T ddT2)(d14)(d16) (d+2)(d16)’

(6.21)
- 12F,
Rz__d(d+2)(d+4)(d+6)

(d*+10d3+ 19d?— 44d — 90)F , (d+12)F,
d(d+2)(d+4)(d16) d(d+2)(d+6)
12F, 2(d®*+8d?+10d—18)F¢

T 4(d+2)(d+6) | d(d+2)(d+4)(d+6)
4F ¢

 (d+2)(d+6)’

_ (d*+18d+48)F; 2(2d+9)F,

R~ 2d(d+2)(d+4)(d+6) T d(d+2)(d+4)(d+6)

(d2+4d—15)F, 2F,
2d(d+6)  (d+2)(d+6)
2(d?+6d+6)F; 2(d+4)Fg

Cd(d+2)(d+4)(d+6)  (d+2)(d+6)’

PHYSICAL REVIEW E 64 046310
B 2(d+3)F, (d+3)(d?+8d+14)F,
R4_d(d+2)(d+4)(d+6) 2d(d+2)(d+4)(d+6)
(d®+5d%—14d—36)F,
T ddr2)(dr6) T 2d(d+2)(d+6)
2(d+3)(d+5)Fs 2F¢
Cd(d+2)(d+4)(d+6) (d+2)(d+6)’

3F3

_ 6F; N (d®+10d?+27d+ 15)F,
~d(d+2)(d+4)(d+6)  d(d+2)(d+4)(d+6)
3F, 2(d+3)F,

T d(dr2)(d16) dd+2)(dr6)
(d*+10d%+ 18d%—54d— 114)F4
d(d+2)(d+4)(d+6)

12F,
T d(dr2)(dr6)’

_ (d?+18d+49)F, (2d+9)F,
R6=4d(d+2)(d+4)(d+6) d(d+2)(dt4)(d+6)
(d?+6d+6)F, Fa
2d(d+2)(d+6) (d+2)(d+6)
(d?>+6d+6)Fs (d%+6d?—11d—42)F4
~ d(d+2)(d+4)(d+6) 2d(d+2)(d+6)

The constantg ,; are found from the requirement that the
functions (6.9) for the renormalized analogs of operators
(6.7), defined by the relatioﬁazzaﬁFg, be UV finite, i.e.,
be finite fore—0. In the MS scheme this gives

Zog=0upt ngAaB/erO(gZ) (6.22

with the coefficientsA,; from Eq. (6.21). For the matrix
of anomalous dimension®.1) at the fixed point(4.9) one
ha5y25= —0,CoAypt O(&?), and for the matrix of critical
dimensions from Table | and E¢4.11) one obtains

Critical dimensions associated with the family of operators
(6.7) are given by the eigenvaluds, of the matrix(6.23. In
particular, ford=3 one obtains

Al~_0.5&, A2~O6&, Ag”l.l‘:},

Ay~2.4e, Ag=8el3, Ag=3s. (6.24)

For generald, only one of the eigenvalues is found analyti-
cally,

(d+1)?
T(d2-3)°

(6.25

5
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10 2

FIG. 3. Critical dimensiond;—Ag (from below to abovgof the operator$6.7) in the orderO(e) vs the space dimensionality for
2=<ds=5 (left) and 4<d=230 (right). The empty circles denote the operators which become trividHR and 3. The dimensions tend to 0
(A1), € (A3—Ag), and Z (Ag) for d—o.

[we recall that all these eigenvalues have corrections of order Using these relations, one can check that two basis opera-
O(e?) and highel. The critical dimensiond , as functions  tors(6.2) for d=3 and three basis operators b2 vanish.
of d are presented in Fig. 3. They are always real, except for herefore, the corresponding eigenvalues are in fact mean-
the pairA, 3 which becomes complex conjugate in the inter-ingless and should be discardgd particular, this happens
val 4<d<5 (in Fig. 3 the real part is shoynOne can also with the dimensior(6.25]. The eigenvalues that survive for
see that for alld, exactly one of the dimensions, denoted byd=2 and 3 belong to the three and fdowestbranches in
A; in Eq. (6.24), is negative, and the others are positive.Fig. 3, respectivelythey are denoted by the thick dnts$n
Existence of a negative dimension implies that the fourthparticular, the dangerous operator remains nontrivial, so that
order structure function in modeld.1)—(1.3) exhibits the  our model exhibits the anomalous scaling also in two and
inertial-range anomalous scaling; for smailr it has the three dimensions. We recall that similar behavior was dem-
form onstrated by the zero-mode solutions: é&lflimensional ex-
pressions for the exponents have well-defined limits dor
9 4-os A —2, but a part of them becomes in fact spurious owing to
Sq(r)=Do "1 ; Aomn)Zat---, (620 the vanishing of the corresponding amplitudes; see the dis-
cussion in the end of Sec. Il B.

see Eq(5.2). The dots stand for the corrections of the form
(mr)2*°) and higher, which arise from the operators in- C. Scalar operators of the form (36)"
cluding more derivatives than fields, and possible anisotropic and the anomalous scaling of5;,
contributions, related to nonscalar operators. The leading The leading terms of the inertial-range behavior of a
term, singular fomr—0, is determined by the negative di- higher-order structure functio8,, are related to the scalar
mensionA ;. composite operators of the form )2 with 0<k=n. In the
The dimensions diverge fat— 3 as a result of the di- previous section we have established the anomalous scaling
vergence ofg, in Eq. (4.9). For d—c, they simplify and  behavior of the fourth-order structure function, as a result of
form three groups that tend to 8,and 2. More precisely, the existence of dangerous operator wWith 2 in the corre-
in the first group there are two dimensions with the behaviokponding OPE. Then the probabilistic inequalities allow one
A=+2.2e/d+0(1/d?). This means that fod=c=, the  to show that all the higher-order structure functions are also
anomalous scaling 0§, vanishes: the phenomenon known anomalous, the leading term of the inertial-range behavior
for the scalar Kraichnan modg#2] and questioned for the for the functionS,, is given by an operator witk=n, the
NS turbulencd43,44. In the following section we shall see number of dangerous operators is necessarily infinite, and the
that the simplification of the exponents and vanishing of thespectrum of their dimensions is not restricted from below.
anomalous scaling fad— o also holds for the higher struc- Let A, be the dimension of the operator that gives the
ture functions. leading contribution to the OPE for the functi®g,, so that
Although the above expressions for the eigenvalues argznxDanrn(z_S)(mr)An_ It is well known in the probability
well defined for anyd> \/5 low integer dimensions require theory that/(x")|*" is a nondecreasing function affor any
special care because of additional linear relations betweerandom variablex. Taking x=[ ,(t,x) — ,(t,x')]? we find
the operators. Fod=3, there are two such relationds  thatSyM«D, r(>~#)(mr)“n/"is a nondecreasing function of
—®,/2-P,+20,=0 and Pg—P5/2=0. Ford=2, one n, and so is the ratipA,|/n [we recall thatA, is negative
more relation arises®,—®,/2=0. [It is also noteworthy and (mr) is small. This proves all the above statements.
that the derivative on the right-hand side of E6.8) in two In principle, calculation of the critical dimensions related
and three dimensions vanishes identically. to the family (@6)2" for any givenn is a purely technical
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problem, and the formula$.11)—(6.16) remain valid in the 0]
general case with obvious alterations. In practice, however

this problem appears very cumbersome, in particular, be- -0
cause the number of relevant operators increases rapidly wit|

n. The situation simplifies for largd, and below we restrict 20 ]
ourselves with the zeroth and first terms of thd &kpan- (1)
sion. To avoid possible misunderstandings, it should be™ -s0
stressed that we deal with thedléxpansion of a critical

dimensionA in its O(e) approximation, that is, the d/ex- 401
pansion of the coefficienA(*)(d) in the representatior
=eAMD(d)+0(e?). -50 1
Despite this simplification, no explicit analytical result is
available for general. Below we only present the results for -60
the critical dimensions of the families§)?" with n<6; the ! 2 8 n 4 5 6

detailed derivation is given in Appendix B.

The first two terms of the @/ expansion for such opera-
tors have the form\(Y(d)=2k+A®Y/d+0O(1/d?), where
k=0,1,...n and A are numerical coefficients indepen-
dent of the parameters and d. It is clear that for larged,
dangerous operators can only be present in the subset wi
k=0. As already mentioned in Sec. VI B, in the family with
n=2 there are two such operators with

FIG. 4. CoefficientsA(*V in the O(e/d) approximation of the
critical dimensions of the operatorsif)?" in the scalar(solid
curve and vector(thick dot9 models. Dashed lines denote monoto-
nous branches of the critical dimensions in the vector case.

51. Tensor operators and the scaling o5, in anisotropic sectors
of arbitrarily high orders

In this section, we apply the RG and OPE approach to the
AM=+2.0 (6.27a8  higher anisotropic sectors of the mod#l1)—(1.3). We shall
concentrate on the second-order structure function, for which
In the family withn=3 there are three such operators with nonperturbative results can, in principle, be derived for arbi-
(11)_ trarily high values of the parametéfrom the exact Dyson-
A= -9.674;-0.973,7.647. (6.27h Wyld equation(see Sec. Il B. This allows one to identify
the solutions of the zero-mode equations, discussed in Sec.
Ill, with definite composite operators and, in principle, to
calculate the corresponding amplitude factors. Using the
OPE technique, we derive explicit analytical expressions for
the leading exponents in all anisotropic sectors to the order
In the family withn=5 there are seven such operators with©O(¢) in d dimensions. Furthermore, we present additional
nontrivial exponents that do not appear in the inertial-range
A(D=_35589—18.660—8.700, behavior of the modg(1.1)—(1.3), but will be activatedand
can determindeading terms in anisotropic sectorsf the
—2.960,2.780,10.674,23.455. (6.270  anisotropy is introduced by the velocity fieltike in Ref.
o ~[13]) and not only by the large-scale forcing.
In the family withn=6 there are eleven such operators with  The analysis of the anisotropic sectors for higher-order
functions using the OPE is extremely cumbersome but, in a
A= —54.572--33.612- 19.554;- 13.834- 12.815, sense, purely technical problem; we shall briefly discuss it in

—4.908,3.839,4.828,9.681,19.552,34.39%.27¢  SeC. VIE. _
According to the general rulesee Sec. Y, the leading

These results confirm and illustrate the general picturderms in the sector=2 are determined by the second-rank
outlined above: in the set of operators wiken, the most  operators built of two gradients; up to derivatives, there are
dangerous operatofthat is, the operator with the lowest two such operators:
negative dimensigrbelongs to the subset with=n, and its
dimensionA,,<0 decreases faster than linearly withThe F1=Puldi0kdjb], Fo=Pildbidb;], (6.28
results(6.27) are illustrated by Fig. 4only the negative di-
mensions are shownlt suggests that the dimensions form a
set of monotonous branches, denoted by dashed lines. ThenereP;, denotes the irreducible part; cf. E@.11 in Sec.
solid curve corresponds to the well-known expression for théll B (here and below, we ude, andA , to denote different
scalar Kraichnan modg#,5] in the sameO(e/d) approxi- operators and their dimensigns
mation: A,=—2n(n—1)e/d. For all n, it lies below the We omit the one-loop calculation of the corresponding
lowest vector branckthe scaling in the scalar model appears2X 2 matrix of critical dimensions, which is similar to the
“more anomalousy; the deviation between the scalar and calculation discussed in Sec. VI B for scalar operators, and
vector cases becomes strongernaimcreases, although the present only its eigenvalues, i.e., the critical dimensions of
ratio of the dimensions approaches unity. operatorg6.28),

In the family withn=4 there are five such operators with

A= _—20.617,7.783-1.018,3.883,14.534.
(6.270

046310-20



ANOMALOUS SCALING, NONLOCALITY, AND.. .. PHYSICAL REVIEW E 64 046310

d®+5d?+2d—8= \(d+4)(d°+2d*—7d®— 4d?+8d + 16) .

2). 2
2(d?—3)(d+4) (=) 629

Ar=¢

In representation5.2), they give rise to exponents—2¢ the second basis operator; it is not fully symmetric and can-
+A;,, which agree with the special case2 of expres- not admix toFs. It remains to note that the contraction of
sions(3.22 and(3.23, obtained in Sec. Il B on the basis of the operator$;—F, andFs—3F;—3F, with any constant

the Dyson-Wyld equation. vector with respect to all four indices gives zero, while
In two dimensions, the transverse vector field can be repanalogous contraction dfg remains nontrivial. This means
resented in the form that F5 cannot admix to those operators in renormalization,
and the above construction indeed gives three independent
0i= €t (6.30  pasis elements of the ty6.2).

The explicit one-loop calculation confirms this conclusion
and gives three different critical dimensions, corresponding
to the basis operatofsg, Fs—3F;—3F,, andF,;—F,, re-

whereg;, is the antisymmetric Levi-Civita pseudotensor and
#(X) is some scalar functioiistream function Using the
well known identity € €;s= djj ds— SisS; one can easily

check that ford=2, the operator$6.28 coincide. Only one spectively:
of the dimensiong6.29, namely,A,=¢, corresponds to a (d+2)(d?+4d—9)
nontrivial basis operatdi6.2) and remains meaningful, while 1= e, (6.313
the otherA =3¢, corresponds to a vanishing basis operator (d*~3)(d+6)
and should be discarded; cf. Fig. 2 fde=1=2.
The leading terms in the sectior 4 are determined by the (d°—1)
fourth rank operators, obtained from the monomkg)y, Az=(d2—_3)8, (6.31b

=Py, [0;0;0x0,] by all possible permutations of its tensor

indices. It turns out that there are orttyreedifferent critical (d%+4d?—d—8)

dimensions, associated with these operators. The correspond- Ag= , (6.310
ing basis operator$6.2) possess different symmetries and (d2-3)(d+4)

therefore can be written down without calculation of dia-

grams. One of them is the fully symmetrized operator, with corrections of orde©(e?) and higher.

The remaining independent basis operators can be ob-
tained by permutations of the indices and can be chosen in
gwe form F3—F,, Fs—Fg, and Fg—3F;—3F,. At first
glance, it seems that one can add another independent ele-
ment,Fs— 3F5—3Fg, but in fact it is equal to the sum of the

F1=Fijn. F2=Fuinj, operatorsFs—3F;—3F, andFg—3F3—3F, up to the mi-
nus sign. Therefore the dimensidn in Eq. (6.31) is unique,
symmetric with respect to the simultaneous exchange of tha, has two fold degeneracy anfl; has threefold degen-
indices within the pairgij} and{kn}, eracy.

Although all three dimensions in E¢6.31) make sense,
only A, appears on the right-hand side of expansibra).
r{ndeed, both the diagrammatic analysis and dimensional con-

Fs=FijknT Fjink + Fikjn T Fkinj * Fjikn + Fiknj -

The others can be constructed as follows. The monomial
can be split into three groups of two operators each,

Fs=Fijkn. Fa=Fjink,

symmetric with respect to the exchange of the indices withi

ol : siderations show that the coefficients in E§.1), corre-
the pairsfik} andijn}, sponding to operator§;j,,, do not involve the function
Fs=Fjin, Fe=Fiknj, (66), from Eq.(2.4b. Therefore, they do not depend on the

vectorn and their tensor indices are carried by the Kronecker

symmetric with respect to the exchange within the pfing 6 symbols or vectors. The contraction of anyrreducible
and{jk}. operator with theS symbols always gives zero; the contrac-

The operators can mix in renormalization only within the tion with the components of a single vectoin expansion
groups with the same symmetry, so that thefFsgtF,, Fgis (5.1 “kills” the basis operators of the formFgs—3F;
closed with respect to the renormalization, and so are the sets3F, andF;—F, (see above
Fi, F4, FsandFs, Fg, Fg. In the first set, the basis op- Thus the only contribution to expansi¢b.2) comes from
erators(6.2) are Fg (it is fully symmetric and no other op- the operatorFg, and the expression-2e+A; should be
erators can admix to)it F;—F, (it is antisymmetric with identified with the leading exponent, from Eg. (3.21 in
respect to the exchange of the indices within the pgik$  Sec. lll; they indeed agree in the orde(s).
and{nj}), andFs—3F,;—3F,. The latter operator is sym- The remaining dimensions, ; will be activated and can
metric with respect to the exchange of the indices within thedetermineleadingterms on the right-hand side of E(.2)
pairs{ik} and{nj}, and for this reason it cannot mix with in thel =4 sectot if the vectorn appears in the correspond-
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ing coefficientsCg in expansion(5.1). This can happen if the
anisotropy is introduced by the velocity fieltlke in Ref. A,=(-4)+
[13]) and not only by the large-scale forcing. However, it (d?—3)(d+21-6)(d+2l—4)(d+21-2)
should be noted that in such a case the dimensions become

eX

a

2
nonuniversal through their dependence on the anisotropy pa- +0(e%, 6.33
rameters, and the expressions like E8131) give only the ;o0
zeroth ordel(isotropig approximations; cf. Ref.13] for the
scalar case. X, = d°+6d* +13d312+ 10d213+ dI*— 12d*— 53d°|
Now let us turn to generdl The relevant operators are the
Ith rank tensors built of two field® and minimal possible —60d2%1%2—6dI3+ 214+ 47d3+92d?| — 29d 1% — 443

number of derivatives: — 2402+ 15811+ 2142 — 156d— 364 + 192,

Pinl 6i,01,- - - di,_,0; 1. (6.329 Xo=(d+2l—4)(d+ 2l —2)(d®+2d? + dI>— 6d?>— 5d|I

+21%2+3d— 16 +30),

i1 %17 %y
Up to total derivatives, monomial$.323 are invariant with
respect to the shiff— 6+ const, so that their dimensions can  x,= (d+ 2| — 2)(d*+ 4d3l + 5d2 2+ dI3— 10d3— 25d2|

appear in expansiofb.2). In the above form, all symmetries

of operators(6.323 are obvious: they are symmetric with —5d1%+ 213+ 27d?— 6d| — 262+ 30d + 92 — 96).
respect to the permutation of the indides,i;} and any per- o

mutations within the subsét,- - -i;_,}. Thus the total num- For =4, the .results(6.3]) are recovered. Like in t_he case
ber of different monomials, obtained from Eq6.323 by |=4, the basis operatd6.2) that possesses the dimension

permutations of the indices, equa{s—1)/2. However, there A1 iS symmetric with respect to all possible permutations of
are only three different dimensions related to them. Indeedthe full set{i,- - -i }; only this operator survives the contrac-
the counterterm to the monomigd.32a necessarily has the tion with the coefficient<Cr in the operator product expan-

same symmetries and therefore can include, along with Ecgion (5.1) for the model(1.1)—(1.3). Therefore onlyA; ap-
(6.323 itself, two more structures: pears on the right-hand side of E&.1) and determines the

leading exponent for théth anisotropic sectory,=2—¢
+A;. For alll andd, this recovers the resul8.21) obtained

SYMPil 0i,01,7i" - iy, 6,1, in Sec. Il on the basis of the Dyson-Wyld equations.
Like in the casd =4, the remaining dimensions, 3 in
O 9 9 a9 ... 9 n Eq. (6.33 are activated and appear on the right-hand side of
SYMPil 01,01,91,917 - 91y Oig), (6.320 Eq. (5.2 when the anisotropy is introduced by the velocity
field.

where Sym denotes the symmetrization with respect to the We recall that the general form of the exponent for a
permutation of the paifi,,i;} and any permutations of the givenI=2 sy =I-2+2k+0O(e); see Sec. lll B. From the
indices{i,- - -i,_4}. Thus the set of three operatq&32 is  OPE viewpointsk=0 corresponds to thkh rank irreduc-

closed with respect to the renormalization, the correspondiniple operator built of two field® andl —2 derivatives, sym-

basis operatoré.2) are their linear combinations and deter- metric in all indices(see above The operators withk

mine three different dimensiond, , 5 all the other basis =1,2,... can beobtained in two ways: one can add

operators are obtained by permutations of the indices andaplacians to the operator described above, or one can add

give rise only to the same dimensions. (k—1) Laplacians, two derivatives with free indices, and
For general, even the one-loop calculation is rather dif- contract the indices of thé fields. Therefore, for general

ficult because individual contributions in the counterterms tathe leading exponeny;=1—2+0(¢&) is unique, while for

the polynomialg6.32) contain powerlike UV divergencies in all k=1,2, ... there aretwo correction exponents of the

addition to logarithmic ones. In contrast with the calculationform y,=1-2+2k+0O(g). In two dimensions, these two

discussed in Sec. VI B, one cannot neglect the space-timgossibilities coincide, see the discussion below 29,

inhomogeneity of the field8 in the diagram; in other words, and only one exponent exists for aky0,1,2 ... .

one cannot neglect the dependence of its integrand on the For | =0, the general form of the exponent js=2k

external momentp and should expand the integrand up to +O(¢); the first two solutions,y=0 and y=2—¢, are

the terms of ordep? 2. This expansion gives rise to the known exactly both from the RG and the Dyson-Wyld equa-

terms that diverge foA — o as some positive powers of the tion, see Sec. Ill A and VI A. For angandd, the solution is

UV cutoff A. However, all such terms contaihsymbols and  unique: for the scalar operators, the indices of the fields are

cancel out when all contributions in irreducible structurescontracted, and the operator with=2k+ O(e) necessarily

(6.32 are taken into account; the result is finite /fat- o, reduces to the unique formAXe, .

contains a first-order pole is, and reduces to a linear com-  This picture is in a full agreement with the results ob-

bination of the three structuré6.323 and(6.32h. tained in Sec. Il for general andl on the basis of the exact
We omit the details of this cumbersome calculation andDyson-Wyld equation for the pair correlation function; see
give only the result, also Ref.[26] for d=3 andj<10.
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E. Higher-order structure functions in the higher-order picture of the inertial-range scaling is essentially the same as
anisotropic sectors in the scalarf14] and magnetid23,29,3Q variants of the

Let us briefly discuss the scaling behavior in the aniso/apid-change model. Namely, each anisotropic sector is de-
tropic sectors for the higher-order structure functions. Thecribed by an infinite set of scaling exponents, with the spec-
RG and OPE analysis given in Sec. V and VI D can directlytrum unbounded from above. The leading exponents in each
be extended to the general case. It shows that the leadirgpctor are organized in the hierarchical order according to
exponentsy,, in the Ith sector of the B-order structure their degree of anisotropy, with the main contribution com-
function, S, P,(z)r ", are determined by thieh rank ten-  ing from the isotropic sector in agreement with the hypoth-
sor operators witk<2n fields ¢ and minimal possible num- €sis on the restored local isotropy of the fully developed
ber of derivatives; the operators that contain the fielgith- ~ turbulence 1]. The leading exponents themselves grow with-
out derivative, or reduce to total derivatives, give noout bound with the degree of anisotropy, in disagreement
contribution to the expansiof5.2) and should be discarded. With the idea of the window of locality36]. _

The practical calculation of the critical dimensions of the ~ The integral operator entering into the equation for the
operators with largéor n is a difficult task, as one could see pair correlation function in the momentum space converges
a|ready on the examp|e with=0 andn=2. However, inthe ON the powerllke solutions with tHeadingexponents in the
zeroth order of the expansion, some important information | =0 andI=2 sectors, but formally diverges on powerlike
can be obtained without calculation, just by the analysis ofolutions withsubleadingexponents andeading exponents
the form of relevant operators. in the sectors witH=4. However, correct analysis of con-

One can easily see that fo=4n, the leading exponents Vvergence here requires the knowledge of the behavior of the
are determined by thkth rank tensor operators of the form full solution beyond the inertial range, where it no longer
(36)?", with | free and 41— contracted indices. Inth@(1)  reduces to a sum of power terms. It turns out, that natural
approximation, the exponents themselves are equal to t@SSumptions about the form of the solution allow one to per-
number of derivatives entering into the operatops;=2n  form certain subtractions in the integrals that make them
+0(s). For I>4n, the relevant operators necessarily con-convergent. One can use the formal rules of analytical regu-
tain more derivatives than fields, and for the leading expola@rization and simultaneously omit the subtracted terms to
nents one obtainsy, =1—2n+0(s). obtain correct answers for the convergent integrals with

One can thus conclude that for higherthe general pic-  Proper subtractions. Moreover, the realizability of these so-
ture remains the same as 5. each anisotropic sector pos- 'Utions is also guaranteed by the RG approach, where they
sesses its own set of scaling exponents; the leading exp&e identified with the contributions of certain composite op-
nents obey hierarchy relations at least for smaland | erators in the correspondlr_lg operator pro_duct expansions.
> 4n; they grow withl without bound. Of course, there can Therefore, such exponents indeed appear in the full solution
be several exponents for givérand n; we recall that there N the inertial range. _ _
are six exponents of the form,g=4+0(s) for I=0 and These conclusions are in agreement with the recent analy-
n=2 (see Sec. VI € In order to identify the unique leading SiS Performed in Refl.26] for the model(1.1)~(1.3) in the
exponent within a family with the same zeroth-order Va|ue,three-d|men5|onal coordinate space, alt_hough the analysis in
or to verify the hierarchy relations fdr<4n, one should the momentum space appears rather different; see also Ref.
perform theO(z) calculation for the relevant families of [24]for the general vector model. Furthermore, the RG and

operators. This cumbersome task lies beyond the scope of tI%PE techniques confirm this picture and extend it to the

present paper and will be discussed elsewhere. higher-order correlation functions. ,
The second aim of the paper has been the analysis of the

anomalous scaling of the higher-order even structure func-
tionsS,,,. Owing to the conservation of the “energy?(x),

We have studied the inertial-range scaling behavior in g¢he second-order function appears nonanomalous with the
model of the passive vector quantity advected by a selfsimple dimensional exponentS,cr?~#. The anomalous
similar white-in-time Gaussian velocity field, with the large- scaling reveals itself on the level of the fourth-order structure
scale anisotropy introduced by a random forcing. In two refunction. In contrast with the scalar case, where the leading
spects, the model is closer to the real Navier-Stoke@nomalous exponents were identified with the critical dimen-
turbulence than the famous scalar rapid-change model: nosions of individual composite operators in the corresponding
locality of the dynamics and mixing of the composite opera-OPE[8], the vector nature of the advected field in our model
tors that determine anomalous exponents. leads to mixing of operators. In particular, the inertial-range

The incompressibility condition for the advected field andbehavior of the functiorg, in d dimensions is given by a set
the pressure term in the diffusion-convection equation makef six close exponents, determined by eigenvalues of the
the dynamics nonlocal. This raises the question of realizabilmatrix of critical dimensions for a set of six operators. One
ity of the zero-mode solutions, that is, convergence of theof the dimensions is negativ¢'dangerous operator)’ and
integrals in the equations for the correlation functions ongives rise to anomalous scaling. The number of relevant op-
powerlike solutions, and consistency of nonlocality and theerators increases rapidly with the order of the function; they
existence of infinite families of scaling exponen6,36. have been calculated in a controlled approximatgmall ¢
The detailed analysis of the exact integral equation satisfieend larged) for the higher-order functions up 8;,. The
by the pair correlation function has shown that the generalatter involves as many as 16 negative exponents, ten of them

VIl. CONCLUSION
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coming from the lower-order functions, and a multitude ofa stretching ternj24], the second-order structure function in
positive exponents that are small and therefore close to theur vector problem(1.1)—(1.3) is nonanomalous, and the
negative ones for smalt. The probabilistic inequalities perturbation theory of Ref.45] would be impossible here.
prove that all the higher-order structure functions are alsd.ike in the scalar moddl3—5,7], this is a consequence of the
anomalous, and the total number of dangerous operators gnergy conservation or, in the field-theoretic language, of
our model is infinite, with the spectrum of dimensions un-vanishing of the critical dimension of the local dissipation
bounded from below. rate; see Sec. VI A for the vector and RE8] for the scalar
Since the mixing of operators is a manifestation of thecases. The vanishing of the critical dimension of the dissipa-
vector nature of the advected field, there are a few generdion rate at the physical value efis also characteristic of the
conclusions regarding the real NS turbulence, which one caNS casd 46,47, which raises serious doubts about the exis-
draw from the analysis of modé¢l.1)—(1.3). tence of the second-order anomaly and the possibility of the
It was demonstrated recently that a careful disentanglingorresponding perturbation theory in the NS turbulence.
of contributions from different anisotropic sectors is un- The analysis of the inertial-range behavior essentially
avoidable in the analysis of experimental data on the reaimplifies asd— . Our model has no finite “upper critical
turbulence, because it allows one to properly identify scalinglimension,” above which anomalous scaling vanisfese
exponents in the situations, where the standard treatment r&ef.[48] for a recent discussion of that concettike in the
veals no scaling behavior at all; see the discussion in Ref&calar cas¢42] and, probably, in the NS turbulen{43,44],
[32—35 and references therein. The example of the modethe anomalous scaling disappeargate, but it reveals it-
(1.1)—(1.3) shows that even in the isotropic sector, or for theself already in theO(1/d) approximation. The anomalous
ideal isotropic turbulence, correlation functions are repre-exponents can be calculated within the double expansien in
sented by infinite sums of powerlike terms, and the numbeand 14. Along with the results[4] for the scalar rapid-
of close terms grows rapidly with the order of the correlationchange model, this confirms the importance of the latge-
function. Although these corrections die out in the formalexpansion for the issue of anomalous scaling in fully devel-
limit L—o, and a pure powerlike behavior with the leading oped turbulence. _ _ .
exponent sets in, in practice it may be obscured by such Although our analysis has been confined to the linear
corrections: the subleading exponents can be very close #oblem(1.1)—(1.3), which has only restricted resemblance

the leading ones and much more important than the leadin ith the real fluid turbulence, some of_the _results can be
terms from the higher anisotropic sectors. This might resulfXt€nded to the case of the vector passive field advected by

in imaginary nonuniversality of the inertial-range exponentsthe NS field, or the nonlinear NS equation itself with some

or deviations from a pure scaling behavior, which increasé25Ses Of random forcing. These questions lie beyond the
: ) . . scope of the present paper. Detailed exposition of the RG
with the order of the correlation function. Therefore, reliable

. S X . . ~approach to the NS problem and the bibliography can be
analysis of the |nert|al-ran_ge scaling necessarily requiregy ind in Refs[16,17]; the renormalization of composite op-
some theory.for the correction exponents. erators and the concept of the operator product expansion are
I_n theoretical models,.anom_alous scaling is usually. &X3lso discussed in Reffl5,41,44,46,47,49,30In particular,
plained by the so-called intermittency phenomenon. Withingitical dimensions of tensor composite operators in the
the framework of numerous models, the anomalous expostirred NS problem were calculated in REEO] (see also
nents are related to the statistics of the local diSSipation ratgec_ 2.3 0f[17]), they demonstrate the same hierarchy as
or to the dimensionality of fractal structures formed by their counterparts from Sec. VI D.
small-scale vortices in the dissipative range; the detailed re- \We believe that the framework of the renormalization
view and bibliography can be found in R¢ll]. As a rule, group and operator product expansion, the concept of dan-
those theories predict simple analytic formulas for the depengerous composite operators, exact functional equations, and
dence of the anomalous exponents mnthe order of the the ¢ and 14 expansions will become the necessary ele-
structure function. Although such formulas can provide aments of the appearing theory of the anomalous scaling in
very good fit for the experimental results, the experience orully developed turbulence.
the rapid-change models suggests that they cannot be abso-
lutely correct. Even for the scalar model, thelependence of ACKNOWLEDGMENTS
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Recently, a systematic perturbation theory for the anomal8/2001.
lous exponents in the NS turbulence was proposed, where
the role of a formal expansion parameter is played by the
anomalous exponent fds,, assumed to be small but non-
trivial [45]. In contrast with the magnetic variant of the
rapid-change mode]27,28 and the general A model” It was shown in Sec. lll B that the equation for the expo-
with nents vy, in Ith anisotropic sector can be written as

APPENDIX A: EQUATIONS FOR THE EXPONENTS IN
THE HIGHER ANISOTROPIC SECTORS OF THE
PAIR CORRELATION FUNCTION
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de{C{}|=0. Forl=2, the matrix element€!}), were given
in Eq.(3.19. In general, the matrig}), is symmetric and its
elements are finite linear combinations of the integials
=[,+2J with J from Eq. (2.13 and | ,=I,(y,—2e+2)
from Eq.(3.3), with n as high a$/2+ 2. In this appendix, we
present the coefficient€!)) for higher values of up tol
=12. Then equations foy, can be written in a straightfor-
ward way. Below we denotél ;=(d+Kk)(d+k+2)---(d
+s—2)(d+s) andd,=(d+Kk).

C{¥=d, 44— (d+2)(d?+5d—2)l3+(d?>—1)(2d+5)I,

—(d=1)%(d+1)T4,
C{W=—dpds+2d, 43— (d+1)(2d+5)I,+(d>~1)T,,

(d+1)
12

1
C(zé):d2’4|4_ §d2‘4(d+2)|3+ (d3+ 1(1212

d
+24d+12)1,— rz(dz—l)(d+4)ll.

(d®+10d+1) ds(d?+6d—5)
+ I,—3
d8 d6,8

+d1,3(d— 1)(3d+13) | _d1’3(d—1)27

2 1,

6)_
cld=-1s

3

dsg dyg

(3d+19
dg 4

d,i(d—1)-
N 1.4 )|1a

d,(4d+25
N 3( )I

d; {3d+13)
d 3 '
6,8

cle)—|.—
12 5 d4,8

2

dyg

(d?+14d+43) |
T34, 4
da(d3+30d2+ 216d+ 430) |
30dg 8
dy «(d3+ 15d%+ 66d -+ 85) |
15d, ?
dyy(d—1)(d*+8d+10).
30d,g o

6)_
CH)=—1Is

(d2+15d+8)I
o dp ®
d;5(3d2+23d—22)
2> |
d8,12
dl,5(d_1)2~|-'

d6,12

d(2d—1)(d+11)
d10,12
L didd=1)(4d+25)

d6,12

8
ciP=1s 4

3 2

1
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2d+1
c(182>=—|6+2( i

ds(7d+64)

5—
d12

,0ad7d+58)  dig4d+25)

4
d10,12

dyg(d— 1-

d8,12

8)_
CH=1s—

d6,12

l1,
d6,12

(d?+24d+116)

5

ds(d3+58d2+ 7480+ 2632 |

56d10,12 4
d35(3d3+900%+ 7881+ 2072 |

56d8,12 3
d; 5(3d?+50d+ 196)

56d6,12

2

dig(d—1)(d%+ 12d+28)T

56ds 1 b

C(lllO): =17

. (d+1)(d+19 _Ed7(d2+ 15d—4)

die

+10

dsAd?+12d—9)

~J

5
d14,16

Ed3,7(2d2+ 19d—19)

d12,16
, duAd—1)(5d+41)

4

3
d10,16

_ dl,?(d_ 1)2T

d8,16

B (5d+53) |

d8,16

d,(11d+ 128

ci=I
12 7 d16 6

ds7d+81

5
d14,16

dyA11d+113)

diz16
d; A5d+41)

3
d10,16

dl,?(d_ l)T

d8,l6

o1+

I,
d8,16

(d?+36d+ 239
5d;6 6

d,(d3+94d%+ 184+ 9432 |
9cx3114,16 °

. 2d5,7(d3+ 49d%+ 6720+ 2727 |

45d12,16 4

dy A d%+ 3402+ 357d+ 1167

[
150,16 ®

+d1,7(2d3+ 53d%+444d+ 1179 |
45dB,16 2

dy Ad—1)(d*+ 16d+54).

90dg 16 b
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. (d?+25d + 34) do(2d?+39d—1) where we have used the relatiofls4) and (6.18 and de-
CiP=1g- d l7+3 d 6 noted
20 18,20
d; o(3d%+49d—28 d 4d?+55d—4 _
_5 7,9( d ) 5 59( d 7) 4 Ti1i2i3i4yjljzjgj4=f dnn|1n|3P|212(n)P|414(n)PJlJ3(n)
16,20 14,20 (BZ)
d3o50°+57d—58)  dyd—1)(6d+61
-3 ad ) 3 1d N )|2 The integration over the unit sphere drdimensional space
d12,20 d10,20 in Eqg. (B2) can be explicitly performed using the isotropy
dyg(d— 1)2. relations(6.17):
T doz 1
’ Tisigigiquinisisis™ [dg'l 35'2125'41451113
12 (3d+398) do(16d+ 223
CP=—1g+2 l,— 1
d2o dig 20 s S Y
d ( 1212714147 1113113
0,2
:d7,9(5d+ 72) l:d5,9(5d+ 69) | ’
- di6,20 - d14,20 N +611i3005i,0igigis T 5414511135i1i2i312)
d; o(4d-+49 d, ((6d+61 d;o(d—1)- 1
+4 ad )1, el ) 1k )|1, 700536 isigiginia T OiniyOiyinisinisi
d1220 d1020 d1020 doa J1)3™111ol3l4l2 14 2127111314l 1314
(d2+50d+ 424) 1
CiP=1g e 7 0141 0iizisinizis) T g Oiaisairialala
do(d®+ 13802+ 37681+ 25564, (B3)
134 le wheredg=d(d+2) ... (d+k); cf. Appendix A.
18,20 Although the coefficients of the tens¢B3) behave as
d7 o(d3+72d0%+ 13921+7744) O(1/d) for d—oo, contractions of their indiceg, can com-
-5 13234 50 s pensate the smallnefhe indicesjy are contracted with the
factor 9696 in Eq. (B1) and cannot be contracted with each
d59(d3+ 50d2 + 754d+3498) otherl. Such contractions occur when the factor
+5 66d14 20 L 9°F(a)ldada contains the terms of the forrﬁili35i2i4 or
d39(5d3+195d2+240€d+9416) 5ili45i? . (the third term,s; 1ip0igi g is forbidden by the trans-
I3 versality of the fieldd). In particular,
66d12 20
5d%+ 16242+ 1680 + 558 7$1 i
did & o 20,0, 6= (B4)
1321020 '2 ' 'sla
dyg(d—1)(d*+ 20d+88)~I Here and below, we use the notatiorﬂ);i'_::ij‘;
13210 20 v =0;,0i,---9; 0, cf. Eq.(6.7) in Sec. VIB.

APPENDIX B: CALCULATION OF THE CRITICAL
DIMENSIONS OF THE OPERATORS (#6)2"
FOR LARGE d

However, both such contractions can appear simulta-
neously only in the term with, 4 in Eq. (B3) and give an
O(1/d) contribution. The leadin@®(1) terms arise from the
contraction of the pair,ij in the first term of Eq(B3). The

The critical dimensions of the scalar composite operator§eeded term of the fornd, ;_ in the factor #°F(a)/dasa
of the form (F6)>" were presented and discussed in Secappears in every differentiation of the block Bfthat con-
VI C in the first nontrivial ordersQ(e) andO(e/d), of the  tains the contraction of the indices of derivatives:
double expansion ir and 14; see Eqs(6.27). Below we o~ be
give the derivation of those results. Dy

The UV divergent part of the diagram from E@.9) with da ;i 0a;_; Oizia
a composite operato@)>" is given by the formulag6.9)— vz e
(6.20 for n=2; see Sec. VIB. With obvious alterations, Substituting Eq(B5) into Eq. (B1) gives the contribution
they apply to the case of generahnd can be summarized as

(5|2b5|4c+ 5|2c5|4b) (85)

[the O(g) approximation in the renormalized variables ng(,u/m)E gCqy(pu/m)*
0 0h0; = DPC
2 2e Jl i 2¢ Iq1
gCq(u/m)®  9°F(a) 56 ()3 6 (0T
2¢ a0, 't 01209130100 Titgigia.inialsa that is, the blockDES is reproduced, and the counterterm to

(B1)  the operatoF, in the orderO(1) is proportional to the same
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monomialF ,. The number of such contributions equals to lilalololalz- - I
a o q)5k5151525253 o 5 =[5Kk51,5152,5285, - - - Sk-18]-
the numbeln of the contractions between the derivatives in (B10)

the monomlaIF , and we obtain
1 Now let us collect all possible contributions of order
a5~ 5 Nadapt O(L/d), (Bea  O(1/d). _ o
(i) As already mentioned above, & 1/d) contribution
_ appears from the term wittly 4 in Eq. (B3), when the both
7&0;3(9*): —N, 6,5+ 0(1/d), (B6b)  derivatives in the vertex6.12) act on¢;. In Eq. (B1), this
gives the contribution of the form

B 9Cq [ n 6,0,.6, _9C(m|"
where 0<n,=<n for operators from the family46)>". The 2ed E i,%.9%, 2:d!m b1,

minimal possible valueA ,=0, is reached fon,=n, that is,

for the operators where all the derivatives are contracted onlihat is, the operatoF in Eq. (B9) reproduces itself, and the
with each other. In the famil¢6.7), one hagi,=n=2 for F, numbgr of such terms is equal . Therefore, the_: corre-
andFg: h,=1 (A,=¢) for F5, Fy, andFg: R,=0 (A sponding _contrlbutlons to the matricés,; and v}, in Eq.

= 2¢) f’or I(él. “ T e “« (B6) are diagonal and have the forms

A

A®=(n-"n,)e+0(1/d), (B6C)

Let us turn to the calculation of th@(1/d) correction to

the resultgB6). We write 51Aa,8:2_(:;6aﬁ1 51y’;ﬁ= — %5(13- (B11)

A,=AO+cC,/d (B7)
(i) An O(1/d) contribution appears from the term with
with A from (B6c) and numerical coefficient€,, deter- do> in Eq. (B3), when the both derlvatlves in the vertex
mined by the relation (6.12 act on any one of tha factors®p¢ in F and produce
defA—AO_C_/d]=0 88) the delta symbol5I1I3 Each of these dlfferentlatlons gives
@ « ' into Eq. (B1) the contribution
where A is the matrix(4.11) for the family (96)?" with a
givenn. ng( ) 30;,600;,0
. . . . . . . b (%]
Since in theO(1) approximation the matrid is diagonal 2ed 1
with the diagonal elementd?), all the nondiagonal ele- _ o _
ments of the matrix in Eq(B8) are of orderO(1/d), as well and the_cor_respondmg contributions into the functigBe)
as its diagonal elements that correspond to(thegenerate ~ @re again diagonal:
eigenvalueAgO). The diagonal elements that correspond to
the eigenvalues different froth(”) are of ordeiO(1). It then SyA, 5= —
follows that the determinant in E¢BS) is of orderO(1/dV), «h
whereN is the degeneracy of the eigenvalﬁéo), and the
vanishing of the full determinant in the leading approxima-

3n , 3n
2d Oaps 517a3:F Oap - (B12)

(iii) The contributions into EqB1) from the first term of

tion is equivalent to the vanishing of it$>X N subdetermi- Eq. (B3),
nant that corresponds (%, c e 52F(a)

This means that in th®(1/d) approximation, the equa- d d( ————3;,6,,9;,6;, (B13
tions for the coefficient€, corresponding to different val- 4e \mj oay;,0a i, 2

ues of A or, equivalentlyn,, are independent, and these

coefficients can be sought separately. _
It is clear from Eq.(B6c) that for small 1d, dangerous N ¢,

operators A ,<0) can be present only among the operators . )

with A =0, and below we confine ourselves to this family. i, %i,d¢k/ i i, = 2K[[151,5152,5283, - . . Sk-1l1]

For such operator),=n (tensor indices of the derivatives (B14)

are contracted only with each other, and the same holds fo

the indices of the fieldsand they always can be represented

in the form

The operatiory; 6; dlda; ;, breaks the chain of contractions

ih the notation of Eq(B10). In the following, the field with
the indexj, is not differentiated, since it does not belong to
the operatof(a) in the vertex(6.12).
F=($)"($2)"- - - ()", (B9) The operationaj1¢9i43/aaili4 acts either onto the factor
(B14) or onto some other factap in the operatofB9). In
where=]_ kn,=n and ¢, is the scalar operator that con- the latter case, another broken chain of the f¢B4) ap-
tains X fields # and cannot be represented as a product. Thipears; along with the first broken chain it gives rise to the
operator necessarily reduces to the fdrofii Eq. (B4) for  unbroken chain wittk+ s elements, that isp, . . Therefore,
k=1] this process gives rise to the counterterm
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9Cqy

25d (B15)

( ) 4ksdy+ s

for any pair of factorsp,, ¢ in the operatofB9), and they
determine nondiagonal contributions to the matri@s).
The action of the opera'[iosij1¢9i4(9/(9ai1i4 onto the chain

(B14) produces a number of different terms. One possibility

is the breakdown of the chain of contractions of two kinds:

Sk-1l1]s
(B16a

[]1S1,81S2, - - - Sp-1J1.11Sps1s « « -

Sk—1l1]-
(B16b)

[J1S1,51S2, - - - Sp-1l1,J1Sp+1, - - -

The first variant is obviouslyb ¢, that is, the “decay”

g d

" 2ed (B17)

()Ekwkp

The second variant givek{ 1) factors¢,, and they give
the diagonal contribution to the matricé36):

q

1
T kgz nk(k—1)8,4 (B18)

with n, andq from Eg. (B9).

Finally, the differentiation of the rightmost factor in Eq.
(B14) givesd¢y . This is the leadingd(1) contribution, but
it also gives theD(1/d) term after the substitution

2
9—-0 =g |1t 3 +0(1/d?).

The contribution to the matriceg®6) is also diagonal:

~n . 2n
O4Pap=gOupr  O4Vap=— g Oap- (B19

Collecting the contributiongB11), (B12), (B18), and
(B19) gives

oA

1 q
T nl—n+k§=‘,2 nk(k—1) [8,5, (B20a

q

22 nk(k—1) |5

(B20b

L, 1
57”"8:6 n—n;—

for the total diagonalO(1/d) contribution to the matrices
(B6), while their nontrivial nondiagonal elements are deter-
mined by Egs(B15) and(B17), with the summation in the
former over all pairs of the factois, ¢ in the operatofB9).

Consider a few examples that illustrate the above algo-

rithm and lead to the results announced in Sec. VI C.

Forn=2, the family of operators with,,=n=2 consists
of two elements,

F:{Qﬁv(ﬁz}:
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and the equatio(B8) for the coefficient< , in the represen-
tation (B7) has the form(here and below we omit the sub-
script @ and change the signs of the matrix elements so that

The solutions ar€=*2./2, as announced in E¢6.273.
For n=3, the relevant family consists of three elements,

F={¢3, b1, b},

the equation has the form

cC 12 o0
2 C 8 |=0 (B22)
0 6 3+C

with the solutions given in Eq6.27h.
Forn=4, the relevant family consists of five elements,

F={#1, 072,03, b1b3, ¢4},

the equation has the form

C 240 O 0
2 C 4 16 0
0 4 C 0 16]|=0 (B23)
0 6 0 3+tC 12
0 0 4 8 8tC

with the solutions given in Eq6.270.
For n=5, the relevant family consists of seven elements,

F={¢3, 03¢0, d105, 13, 1¢a, b2b3. b5},

the equation has the form

C 40 0 0 0

2 C 12 24 0 0 0

O 4 C 0 16 16 0

0 6 0 3+C 24 4 0 | =0
0O 0 4 8 8C O 16

0 0 6 2 0 3*C 24

0 0 0 10 10 13%C

(B24)

with the solutions given in Eq6.279.

Forn=6, the relevant family consists of eleven elements,

F={$3. 0102, 0105, b3, b33, br1b2¢b3,
B3, D1ba, b2da, b1bs, be},

the equation has the form
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C 60 0 O 0 0
2 C 24 0 32 0 0
0 4 C 4 0 32 0
0 0 6 C 0 0 0
0 6 0 0 3+C 12 0
0O 0 6 O 2 3+C 8
0O 0 0 O 0 12 6-C
0O 0 4 O 8 0 0
0O 0 0 4 0 8 0
0O 0 0 ©O 0 10 0
0O 0 0 ©O 0 0 6

with the solutions given in Eq6.279.
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0 0
0 0 0 0
16 0 0 0
0 48 0 0
36 0 0 0
0 12 24 0 | =0 (B25)
0 0 0 36
8C 4 32 0
2 &C 0 32
10 0 15C 20
0 12 12 24C
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